Hydroquinone (1,4-benzenediol) has been widely used in clinical situations and the cosmetic industry because of its depigmenting effects. Most skin-lightening hydroquinone creams contain 4%–5% hydroquinone. We have investigated the role of resveratrol in prevention of hydroquinone induced cytotoxicity in mouse primary hepatocytes. We found that 400 μM hydroquinone exposure alone induced apoptosis of the cells and also resulted in a significant drop of cell viability compared with the control, and pretreatment of resveratrol to a final concentration of 0.5 mM 1 h before hydroquinone exposure did not show a significant improvement in the survival rate of the hepatocytes, however, relatively higher concentrations of resveratrol (≥1 mM) inhibited apoptosis of the mouse primary hepatocytes and increased cell viability in a dose-dependent manner, and in particular the survival rate of the hepatocytes was recovered from 28% to near 100% by 5 mM resveratrol. Interestingly, pretreatment with resveratrol for longer time (24 h), even in very low concentrations (50 μM, 100 μM), blocked the damage of hydroquinone to the cells. We also observed that resveratrol pretreatment suppressed hydroquinone-induced expression of cytochrome P450 2E1 mRNA dose-dependently. The present study suggests that resveratrol protected the cells against hydroquinone-induced toxicity through its antioxidant function and possibly suppressive effect on the expression of cytochrome P450 2E1.
References
[1]
Penney, K.B.; Smith, C.J.; Allen, J.C. Depigmenting action of hydroquinone depends on disruption of fundamental cell processes. J. Invest. Dermatol. 1984, 82, 308–310.
[2]
Stratford, M.R.; Ramsden, C.A.; Riley, P.A. The influence of hydroquinone on tyrosinase kinetics. Bioorg. Med. Chem. 2012, 20, 4364–4370, doi:10.1016/j.bmc.2012.05.041.
[3]
Amer, M.; Metwalli, M. Topical hydroquinone in the treatment of some hyperpigmentary disorders. Int. J. Dermatol. 1998, 37, 449–450, doi:10.1046/j.1365-4362.1998.00499.x.
[4]
Skin Bleaching Drug Products for over-the-Counter Human Use; Proposed Rule. 71 Federal Register 51146-5115521; 2006.
[5]
Kawanishi, S.; Hiraku, Y.; Inoue, S. DNA damage induced by Salmonella test-negative carcinogens through the formation of oxygen and nitrogen-derived reactive species. Int. J. Mol. Med. 1999, 3, 169–174.
[6]
Martinez, A.; Urios, A.; Blanco, M. Mutagenicity of 80 chemicals in Escherichia coli tester strains IC203, deficient in OxyR, and its oxyR(+) parent WP2 uvrA/pKM101: Detection of 31 oxidative mutagens. Mutat. Res. 2000, 467, 41–53, doi:10.1016/S1383-5718(00)00020-6.
[7]
Winn, L.M. Homologous recombination initiated by benzene metabolites: A potential role of oxidative stress. Toxicol. Sci. 2003, 72, 143–149, doi:10.1093/toxsci/kfg008.
[8]
Andreoli, C.; Rossi, S.; Leopardi, P.; Crebelli, R. DNA damage by hydroquinone in human white blood cells: Analysis by alkaline single-cell gel electrophoresis. Mutat. Res. 1999, 438, 37–45, doi:10.1016/S1383-5718(98)00160-0.
[9]
Hirakawa, K.; Oikawa, S.; Hiraku, Y.; Hirosawa, I.; Kawanishi, S. Catechol and hydroquinone have different redox properties responsible for their differential DNA-damaging ability. Chem. Res. Toxicol. 2002, 15, 76–82, doi:10.1021/tx010121s.
[10]
Shibata, M.A.; Hirose, M.; Tanaka, H.; Asakawa, E.; Shirai, T.; Ito, N. Induction of renal cell tumors in rats and mice, and enhancement of hepatocellular tumor development in mice after long-term hydroquinone treatment. Jpn. J. Cancer Res. 1991, 82, 1211–1219, doi:10.1111/j.1349-7006.1991.tb01783.x.
[11]
De la Lastra, C.A.; Villegas, I. Resveratrol as an antioxidant and pro-oxidant agent: Mechanisms and clinical implications. Biochem. Soc. Trans. 2007, 35, 1156–1160, doi:10.1042/BST0351156.
[12]
Aggarwal, B.B.; Bhardwaj, A.; Aggarwal, R.S.; Seeram, N.P.; Shishodia, S.; Takada, Y. Role of resveratrol in prevention and therapy of cancer: Preclinical and clinical studies. Anticancer Res. 2004, 24, 2783–2840.
[13]
Bass, T.M.; Weinkove, D.; Houthoofd, K.; Gems, D.; Partridge, L. Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech. Ageing Dev. 2007, 128, 546–552, doi:10.1016/j.mad.2007.07.007.
[14]
Leone, S.; Basso, E.; Polticelli, F.; Cozzi, R. Resveratrol acts as a topoisomerase II poison in human glioma cells. Int J Cancer. 2012, 131, E173–E178, doi:10.1002/ijc.27358.
[15]
Miyazaki, M. Primary culture of adult rat liver cells. I. Preparation of isolated cells from trypsin-perfused liver of adult rat. Acta Med. Okayama 1977, 31, 351–360.
[16]
Tominaga, H.; Ishiyama, M.; Ohseto, F.; Sasamoto, K.; Hamamoto, T.; Suzuki, K.; Watanabe, M. A water-soluble tetrazolium salt useful for colorimetric cell viability assay. Anal. Commun. 1999, 36, 47–50, doi:10.1039/a809656b.
[17]
Fujita, H.; Ogino, T.; Kobuchi, H.; Fujiwara, T.; Yano, H.; Akiyama, J.; Utsumi, K. Cell-permeable cAMP analog suppresses 6-hydroxydop-amine-induced apoptosis in PC12 cells through the activation of the AKT pathway. Brain Res. 2006, 1113, 10–23, doi:10.1016/j.brainres.2006.06.079.
[18]
Inayat-Hussain, S.H.; Ross, D. Intrinsic pathway of hydroquinone induced apoptosis occurs via both caspase-dependent and caspase-independent mechanisms. Chem. Res. Toxicol. 2005, 18, 420–427, doi:10.1021/tx049762o.
[19]
Yang, E.J.; Lee, J.S.; Yun, C.Y.; Kim, I.S. The pro-apoptotic effect of hydroquinone in human neutrophils and eosinophils. Toxicol. In Vitro 2011, 25, 131–137, doi:10.1016/j.tiv.2010.10.004.
[20]
Lee, J.S.; Yang, E.J.; Kim, I.S. Hydroquinone-induced apoptosis of human lymphocytes through caspase 9/3 pathway. Mol. Biol. Rep. 2012, 39, 6737–6743, doi:10.1007/s11033-012-1498-y.
[21]
Zheng, Y.; Liu, Y.; Ge, J.; Wang, X.; Liu, L.; Bu, Z.; Liu, P. Resveratrol protects human lens epithelial cells against H2O2-induced oxidative stress by increasing catalase, SOD-1, and HO-1 expression. Mol. Vis. 2010, 16, 1467–1474.
[22]
Horita, M.; Wang, D.-H.; Tsutsui, K.; Sano, K.; Masuoka, N.; Kira, S. Involvement of oxidative stress in hydroquinone-induced cytotoxicity in catalase-deficient Escherichia coli mutants. Free Radic. Res. 2005, 39, 1035–1041, doi:10.1080/10715760500232008.
[23]
Hancock, J.T.; Desikan, R.; Neill, S.J. Role of reactive oxygen species in cell signaling pathways. Biochem. Soc. Trans. 2001, 29, 345–350, doi:10.1042/BST0290345.
[24]
Hsieh, T.C.; Lu, X.; Wang, Z.; Wu, J.M. Induction of quinone reductase NQO1 by resveratrol in human K562 cells involves the antioxidant response element ARE and is accompanied by nuclear translocation of transcription factor Nrf2. Med. Chem. 2006, 2, 275–285, doi:10.2174/157340606776930709.
[25]
Zhang, H.; Shih, A.; Rinna, A.; Forman, H.J. Exacerbation of tobacco smoke mediated apoptosis by resveratrol: An unexpected consequence of its antioxidant action. Int. J. Biochem. Cell Biol. 2011, 43, 1059–1064, doi:10.1016/j.biocel.2009.12.022.
Baur, J.A.; Pearson, K.J.; Price, N.L.; Jamieson, H.A.; Lerin, C.; Kalra, A.; Prabhu, V.V.; Allard, J.S.; Lopez-Lluch, G.; Lewis, K.; Pistell, P.J.; Poosala, S.; Becker, K.G.; Boss, O.; Gwinn, D.; Wang, M.; Ramaswamy, S.; Fishbein, K.W.; Spencer, R.G.; Lakatta, E.G.; Le Couteur, D.; Shaw, R.J.; Navas, P.; Puigserver, P.; Ingram, D.K.; de Cabo, R.; Sinclair, D.A. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006, 444, 337–342.
[28]
Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; Geny, B.; Laakso, M.; Puigserver, P.; Auwerx, J. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006, 127, 1109–1122, doi:10.1016/j.cell.2006.11.013.
[29]
Csiszar, A.; Labinskyy, N.; Pinto, J.T.; Ballabh, P.; Zhang, H.; Losonczy, G.; Pearson, K.; de Cabo, R.; Pacher, P.; Zhang, C.; Ungvari, Z. Resveratrol induces mitochondrial biogenesis in endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 2009, 297, H13–H20, doi:10.1152/ajpheart.00368.2009.
[30]
Timbrell, J. Principles of Biochemical Toxicology, 3rd ed.; Taylor & Francis Inc.: London, UK, 2000; pp. 195–203.
[31]
Ungvari, Z.; Sonntag, W.E.; de Cabo, R.; Baur, J.A.; Csiszar, A. Mitochondrial protection by resveratrol. Exerc. Sport Sci. Rev. 2011, 39, 128–132, doi:10.1097/JES.0b013e3182141f80.
[32]
Lieber, C.S. Cytochrome P450 2E1: Its physiological and pathological role. Physiol. Rev. 1997, 77, 517–544.
[33]
Cederbaum, A.I.; Wu, D.; Mari, M.; Bai, J. CYP2E1-dependent toxicity and oxidative stress in HepG2 cells. Free Radic. Biol. Med. 2001, 31, 1539–1543, doi:10.1016/S0891-5849(01)00743-2.
[34]
Cederbaum, A.I. Cytochrome P450 2E1-dependent oxidant stress and upregulation of anti-oxidant defense in liver cells. J. Gastroenterol. Hepatol. 2006, 21 Suppl 3, S22–S25, doi:10.1111/j.1440-1746.2006.04595.x.
[35]
Piver, B.; Berthou, F.; Dreano, Y.; Lucas, D. Inhibition of CYP3A, CYP1A and CYP2E1 activities by resveratrol and other non volatile red wine components. Toxicol. Lett. 2001, 125, 83–91, doi:10.1016/S0378-4274(01)00418-0.