|
半导体学报 2010
Numerical study of the sub-threshold slope in T-CNFETs
|
Abstract:
The most attractive merit of tunneling carbon nanotube field effect transistors (T-CNFETs) is the ultra-small inverse sub-threshold slope. In order to obtain as small an average sub-threshold slope as possible, several effective approaches have been proposed based on a numerical insight into the working mechanism of T-CNFETs: tuning the doping level of source/drain leads, minimizing the quantum capacitance value via tuning the bias condition or increasing the insulator capacitance, and adopting a staircase doping strategy in the drain lead. Non-equilibrium Green's function based simulation results show that all these approaches can contribute to a smaller average inverse sub-threshold slope, which is quite desirable in high-frequency or low-power applications.