全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Axioms  2012 

From Coalgebra to Bialgebra for the Six-Vertex Model: The Star-Triangle Relation as a Necessary Condition for Commuting Transfer Matrices

DOI: 10.3390/axioms1020186

Keywords: vertex model, bialgebra, coalgebra, Bethe ansatz

Full-Text   Cite this paper   Add to My Lib

Abstract:

Using the most elementary methods and considerations, the solution of the star-triangle condition (a2+b2-c2)/2ab = ((a’) ^2+(b’) ^2-(c’)) ^2/2a’b’ is shown to be a necessary condition for the extension of the operator coalgebra of the six-vertex model to a bialgebra. A portion of the bialgebra acts as a spectrum-generating algebra for the algebraic Bethe ansatz, with which higher-dimensional representations of the bialgebra can be constructed. The star-triangle relation is proved to be necessary for the commutativity of the transfer matrices T(a, b, c) and T(a’, b’, c’).

References

[1]  Baxter, R.J. Exactly Solved Models in Statistical Mechanics; Academic Press: Waltham, MA, USA, 1982.
[2]  Chari, V.; Pressley, A. A Guide to Quantum Groups; Cambridge University Press: Cambridge, UK, 1994.
[3]  Kauffman, L.H. Knots and Physics; World Scientific: Singapore, 1991.
[4]  McCoy, B.M. Advanced Statistical Mechanics; Oxford University Press: Oxford, UK, 2010.
[5]  Schmidt, J.R. The algebraic Bethe Ansatz without the YangBaxter equation. Can. J. Phys. 2008, 86, 1177–1193.
[6]  Takhtadzhan, L.A.; Faddeev, L.D. The quantum method of the inverse problem and the Heisenberg XYZ model. Uspekhi Mat. Nauk 1979, 34, 13–63.
[7]  Schmidt, J.R. A modified Bethe Ansatz for the two-dimensional dimer problem. Can. J. Phys. 2007, 85, 745–762, doi:10.1139/P07-075.
[8]  Schmidt, J.R. Spectrum-Generating bialgebra of the hexagonal-lattice dimer model. Can. J. Phys. 2009, 87, 1099–1125, doi:10.1139/P09-064.
[9]  Sweedler, M.E. Hopf Algebras; W.A. Benjamin, Inc.: New York, NY, USA, 1969.
[10]  Faddeev, L.D.; Reshetikhin, N.Y.; Takhtajan, L.A. Quantization of Lie Groups and Lie Algebras. Leningrad Math. J. 1990, 1, 193–225.
[11]  REDUCE is an open-source computer algebra system coded in Lisp. Available online: http://reduce-algebra.sourceforge.net/. , Registered Dec 18, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133