全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Algorithms  2012 

Interaction Enhanced Imperialist Competitive Algorithms

DOI: 10.3390/a5040433

Keywords: Imperialist Competition Algorithm, Island Model Genetic Algorithm, optimization

Full-Text   Cite this paper   Add to My Lib

Abstract:

Imperialist Competitive Algorithm (ICA) is a new population-based evolutionary algorithm. It divides its population of solutions into several sub-populations, and then searches for the optimal solution through two operations: assimilation and competition. The assimilation operation moves each non-best solution (called colony) in a sub-population toward the best solution (called imperialist) in the same sub-population. The competition operation removes a colony from the weakest sub-population and adds it to another sub-population. Previous work on ICA focuses mostly on improving the assimilation operation or replacing the assimilation operation with more powerful meta-heuristics, but none focuses on the improvement of the competition operation. Since the competition operation simply moves a colony ( i.e ., an inferior solution) from one sub-population to another sub-population, it incurs weak interaction among these sub-populations. This work proposes Interaction Enhanced ICA that strengthens the interaction among the imperialists of all sub-populations. The performance of Interaction Enhanced ICA is validated on a set of benchmark functions for global optimization. The results indicate that the performance of Interaction Enhanced ICA is superior to that of ICA and its existing variants.

References

[1]  Holland, J.H. Adaptation in Natural and Artificial Systems; MIT Press: Cambridge, MA, USA, 1992.
[2]  Chen, S.-H.; Chen, M.-C.; Chang, P.-C.; Chen, Y.-M. Ea/g-ga for single machine scheduling problems with earliness/tardiness costs. Entropy 2011, 13, 1152–1169, doi:10.3390/e13061152.
[3]  Clerc, M.; Kennedy, J. The particle swarm—Explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evolut. Comput. 2002, 6, 58–73, doi:10.1109/4235.985692.
[4]  Birbil, S.I.; Fang, S.C. An electromagnetism-like mechanism for global optimization. J. Global Optim. 2003, 25, 263–282, doi:10.1023/A:1022452626305.
[5]  Dasgupta, D.; Yu, S.H.; Nino, F. Recent advances in artificial immune systems: Models and applications. Appl. Soft Comput. 2011, 11, 1574–1587, doi:10.1016/j.asoc.2010.08.024.
[6]  Gao, W.F.; Liu, S.Y.; Huang, L.L. A global best artificial bee colony algorithm for global optimization. J. Comput. Appl. Math. 2012, 236, 2741–2753, doi:10.1016/j.cam.2012.01.013.
[7]  Zhang, Y.; Wu, L. Optimal multi-level thresholding based on maximum tsallis entropy via an artificial bee colony approach. Entropy 2011, 13, 841–859, doi:10.3390/e13040841.
[8]  Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. 1996, 26, 29–41, doi:10.1109/3477.484436.
[9]  Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 1997, 11, 341–359, doi:10.1023/A:1008202821328.
[10]  Atashpaz-Gargari, E.; Lucas, C. Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition. In Proceedings of IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; pp. 4661–4667.
[11]  Behnamian, J.; Zandieh, M. A discrete colonial competitive algorithm for hybrid flowshop scheduling to minimize earliness and quadratic tardiness penalties. Expert Syst. Appl. 2011, 38, 14490–14498, doi:10.1016/j.eswa.2011.04.241.
[12]  Forouharfard, S.; Zandieh, M. An imperialist competitive algorithm to schedule of receiving and shipping trucks in cross-docking systems. Int. J. Adv. Manuf. Tech. 2010, 51, 1179–1193, doi:10.1007/s00170-010-2676-5.
[13]  Karimi, N.; Zandieh, M.; Najafi, A.A. Group scheduling in flexible flow shops: A hybridised approach of imperialist competitive algorithm and electromagnetic-like mechanism. Int. J. Prod. Res. 2011, 49, 4965–4977, doi:10.1080/00207543.2010.481644.
[14]  Shokrollahpour, E.; Zandieh, M.; Dorri, B. A novel imperialist competitive algorithm for bi-criteria scheduling of the assembly flowshop problem. Int. J. Prod. Res. 2011, 49, 3087–3103, doi:10.1080/00207540903536155.
[15]  Lian, K.; Zhang, C.; Gao, L.; Shao, X. A modified colonial competitive algorithm for the mixed-model u-line balancing and sequencing problem. Int. J. Prod. Res. 2012.
[16]  MousaviRad, S.J.; Akhlaghian Tab, F.; Mollazade, K. Application of imperialist competitive algorithm for feature selection: A case study on bulk rice classification. Int. J. Comput. Appl. 2012, 40, 41–48.
[17]  Karami, S.; Shokouhi, S.B. Application of imperialist competitive algorithm for automated classification of remote sensing images. Int. J. Comput. Theory Eng. 2012, 4, 137–143.
[18]  Bagher, M.; Zandieh, M.; Farsijani, H. Balancing of stochastic u-type assembly lines: An imperialist competitive algorithm. Int. J. Adv. Manuf. Tech. 2011, 54, 271–285, doi:10.1007/s00170-010-2937-3.
[19]  Coelho, L.D.S.; Afonso, L.D.; Alotto, P. A modified imperialist competitive algorithm for optimization in electromagnetics. IEEE Trans. Magn. 2012, 48, 579–582, doi:10.1109/TMAG.2011.2172400.
[20]  Kaveh, A.; Talatahari, S. Optimum design of skeletal structures using imperialist competitive algorithm. Comput.Struct. 2010, 88, 1220–1229, doi:10.1016/j.compstruc.2010.06.011.
[21]  Kazemi, S.; Ghorbani, A.; Hashemi, S.N. Deployment of the meta heuristic colonial competitive algorithm in synthesis of unequally spaced linear antenna array. IEICE Electron. Express 2011, 8, 2048–2053, doi:10.1587/elex.8.2048.
[22]  Lucas, C.; Nasiri-Gheidari, Z.; Tootoonchian, F. Application of an imperialist competitive algorithm to the design of a linear induction motor. Energy Convers. Manag. 2010, 51, 1407–1411, doi:10.1016/j.enconman.2010.01.014.
[23]  Nazari-Shirkouhi, S.; Eivazy, H.; Ghodsi, R.; Rezaie, K.; Atashpaz-Gargari, E. Solving the integrated product mix-outsourcing problem using the imperialist competitive algorithm. Expert Syst. Appl. 2010, 37, 7615–7626, doi:10.1016/j.eswa.2010.04.081.
[24]  Soltanpoor, H.; Nozarian, S.; VafaeiJahan, M. Solving the graph bisection problem with imperialist competitive algorithm. Int. Conf. Sys. Eng. Model. 2012, 34, 136–140.
[25]  Rezaei, E.; Karami, A.; Shahhosseni, M. The use of imperialist competitive algorithm for the optimization of heat transfer in an air cooler equipped with butterfly inserts. Aust. J. Basic Appl. Sci. 2012, 6, 293–301.
[26]  Lin, J.-L.; Yu, C.-Y.; Tsai, Y.-H. PSO-based imperialist competitive algorithm. J. Phys. Conf. Ser. 2012. in press.
[27]  Niwa, T.; Tanaka, M. Analysis on the island model parallel genetic algorithms for the genetic drifts. Simul. Evolut. Learn. 1999, 1585, 349–356, doi:10.1007/3-540-48873-1_45.
[28]  Atashpaz-Gargari, E. Imperialist competitive algorithm (ICA). Available online: http://www.mathworks.com/matlabcentral/fileexchange/22046-imperialist-competitive-algorithm-ica (accessed on 10 January 2012).
[29]  Duan, H.B.; Xu, C.F.; Liu, S.Q.; Shao, S. Template matching using chaotic imperialist competitive algorithm. Pattern Recogn. Lett. 2010, 31, 1868–1875, doi:10.1016/j.patrec.2009.12.005.
[30]  Jain, T.; Nigam, M.J. Synergy of evolutionary algorithm and socio-political process for global optimization. Expert Syst. Appl. 2010, 37, 3706–3713.
[31]  Khorani, V.; Razavi, F.; Ghoncheh, A. A new hybrid evolutionary algorithm based on ICA and GA: Recursive-ICA-GA. In IC-AI; Arabnia, H.R., de la Fuente, D., Kozerenko, E.B., Olivas, J.A., Chang, R., LaMonica, P.M., Liuzzi, R.A., Solo, A.M.G., Eds.; CSREA Press: Las Vegas, NV, USA; pp. 131–140. 12–15 July 2010.
[32]  Talatahari, S.; Azar, B.F.; Sheikholeslami, R.; Gandomi, A.H. Imperialist competitive algorithm combined with chaos for global optimization. Commun. Nonlinear Sci. 2012, 17, 1312–1319, doi:10.1016/j.cnsns.2011.08.021.
[33]  Bahrami, H.; Faez, K.; Abdechiri, M. Imperialist competitive algorithm using chaos theory for optimization (cica). In Proceedings of the 2010 12th International Conference on Computer Modelling and Simulation (UKSim), Cambridge, UK, 24–26 March 2010; pp. 98–103. IEEE Computer Society Conference Publishing Service.
[34]  Zhang, Y.; Wang, Y.; Peng, C. Improved imperialist competitive algorithm for constrained optimization. In Proceedings of the International Forum on Computer Science-Technology and Applications, 2009, Chongqing, China, 25–27 December 2009; 1, pp. 204–207.
[35]  Lin, J.-L.; Cho, C.-W.; Chuan, H.-C. Imperialist competitive algorithms with perturbed moves for global optimization. Appl. Mech. Mater. 2012. in press.
[36]  Nozarian, S.; Jahan, M.V. A novel memetic algorithm with imperialist competition as local search. IPCSIT 2012, 30, 54–59.
[37]  Bahrami, H.; Abdechiri, M.; Meybodi, M.R. Imperialist competitive algorithm with adaptive colonies movement. Int. J. Intell. Syst. Appl. 2012, 2, 49–57.
[38]  Ao, Y.; Chi, H. Differential evolution using opposite point for global numerical optimization. J. Intell. Learn. Syst. Appl. 2012, 4, 1–19.
[39]  Worasucheep, C. A particle swarm optimization with stagnation detection and dispersion. In Proceedings of IEEE World Congress on Computational Intelligence, Hong Kong, China, 1–6 June 2008; pp. 424–429.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133