%0 Journal Article %T Interaction Enhanced Imperialist Competitive Algorithms %A Jun-Lin Lin %A Yu-Hsiang Tsai %A Chun-Ying Yu %A Meng-Shiou Li %J Algorithms %D 2012 %I MDPI AG %R 10.3390/a5040433 %X Imperialist Competitive Algorithm (ICA) is a new population-based evolutionary algorithm. It divides its population of solutions into several sub-populations, and then searches for the optimal solution through two operations: assimilation and competition. The assimilation operation moves each non-best solution (called colony) in a sub-population toward the best solution (called imperialist) in the same sub-population. The competition operation removes a colony from the weakest sub-population and adds it to another sub-population. Previous work on ICA focuses mostly on improving the assimilation operation or replacing the assimilation operation with more powerful meta-heuristics, but none focuses on the improvement of the competition operation. Since the competition operation simply moves a colony ( i.e ., an inferior solution) from one sub-population to another sub-population, it incurs weak interaction among these sub-populations. This work proposes Interaction Enhanced ICA that strengthens the interaction among the imperialists of all sub-populations. The performance of Interaction Enhanced ICA is validated on a set of benchmark functions for global optimization. The results indicate that the performance of Interaction Enhanced ICA is superior to that of ICA and its existing variants. %K Imperialist Competition Algorithm %K Island Model Genetic Algorithm %K optimization %U http://www.mdpi.com/1999-4893/5/4/433