|
系统科学与数学 1993
OSCILLATION THEOREMS FOR SECOND ORDER NONLINEAR DIFFERENTIAL EQUATIONS WITH DAMPING
|
Abstract:
考虑二阶非线性阻尼微分方程(α(t)ψ(x(t))x′(t))′ p(t)x′(t) q(t)f(x(t))=0 (1)和二阶非线性微分不等式x(t){(α(t)ψ(x(t))x′(t))′ p(t)x′(t) q(t)f(x(t))}≤0,(2)其中α,p,q∈C(t_0,∞)→(-∞,∞)),ψ,f∈C(R→R),并且α(t)>0,xf(x)>0 (x≠0).此外,我们总假设方程(1)的每一个解 x(t)可以延拓于t_0, ∞)上.在任何无穷区间T,∞)上,x(t)不恒等于零,这样的解叫正则解.一个正则解,若它有任意大的零点,则称为振动的;否则就称为非振动的.若方程(1)的所有正则解是振动的,则称方程(1)是振动的.关于不等式(2)的振动性的定义,与方程(1)的振动性的定义完全类似,不再赘述.