全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Pushing Vertices and the Strong Connectivity of Bipartite Tournaments
推点与二部竞赛图的强连通性

Keywords: Bipartite tournament,pushing vertices,strongly connected
二部竞赛图
,推点,强连通

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $D$ be a digraph and $S$ a subset of $V(D)$. {Pushing $S$} in $D$means reversing the orientation of all arcs with exactly one end in $S$.Klostermeyer proved that it is $NP-$complete to decide if a givendigraph $D$ can be made strongly connected by pushing vertices. In this paper, we show that, for any bipartite tournament $D$ with the bipartition$(X,Y)$ of $V(D)$, if $3\leq |X|\leq |Y|\leq 2^{|X|-1}-1$, then $D$ can be made strongly connected by pushing vertices, and this result is best possible.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133