%0 Journal Article %T Pushing Vertices and the Strong Connectivity of Bipartite Tournaments
推点与二部竞赛图的强连通性 %A Wang Pei %A
王培 %J 系统科学与数学 %D 2006 %I %X Let $D$ be a digraph and $S$ a subset of $V(D)$. {Pushing $S$} in $D$means reversing the orientation of all arcs with exactly one end in $S$.Klostermeyer proved that it is $NP-$complete to decide if a givendigraph $D$ can be made strongly connected by pushing vertices. In this paper, we show that, for any bipartite tournament $D$ with the bipartition$(X,Y)$ of $V(D)$, if $3\leq |X|\leq |Y|\leq 2^{|X|-1}-1$, then $D$ can be made strongly connected by pushing vertices, and this result is best possible. %K Bipartite tournament %K pushing vertices %K strongly connected
二部竞赛图 %K 推点 %K 强连通 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=0CD45CC5E994895A7F41A783D4235EC2&aid=7DAB08691249FC06&yid=37904DC365DD7266&vid=96C778EE049EE47D&iid=CA4FD0336C81A37A&sid=C6AE92CFF8716BDC&eid=EC481BF121090F0C&journal_id=1000-0577&journal_name=系统科学与数学&referenced_num=0&reference_num=9