全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Generalization of Dirac's K4-Subdivision Theorem
Dirac K4细分定理的一种推广

Keywords: Subdivision,wheel,edge-switching
细分
,,边切换

Full-Text   Cite this paper   Add to My Lib

Abstract:

In 1960, Dirac proved that a graph $G$ on $n\geq4$ vertices with $\varepsilon(G)> 2n-3$ contains a subdivision of $K_4$. In this paper, we generalize this result by proving that a graph $G$ on $n\geq4$ vertices with $\varepsilon(G)\geq kn-\frac{(k-1)(k+2)}{2}$ where $k\geq 2$ contains a subdivision of $W_{k+1}$. Also, we give another proof of the Dirac's result using the technique of edge-switching proposed by Fan.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133