%0 Journal Article
%T A Generalization of Dirac's K4-Subdivision Theorem
Dirac K4细分定理的一种推广
%A Xuezheng
%A
吕雪征
%J 系统科学与数学
%D 2006
%I
%X In 1960, Dirac proved that a graph $G$ on $n\geq4$ vertices with $\varepsilon(G)> 2n-3$ contains a subdivision of $K_4$. In this paper, we generalize this result by proving that a graph $G$ on $n\geq4$ vertices with $\varepsilon(G)\geq kn-\frac{(k-1)(k+2)}{2}$ where $k\geq 2$ contains a subdivision of $W_{k+1}$. Also, we give another proof of the Dirac's result using the technique of edge-switching proposed by Fan.
%K Subdivision
%K wheel
%K edge-switching
细分
%K 轮
%K 边切换
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=0CD45CC5E994895A7F41A783D4235EC2&aid=428B3D62E0E853F4076353B3528B3DEC&yid=37904DC365DD7266&vid=96C778EE049EE47D&iid=94C357A881DFC066&journal_id=1000-0577&journal_name=系统科学与数学&referenced_num=0&reference_num=0