全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

THE TRAVELLING WAVE SOLUTION OF THE POPULATION DIFFUSION MODEL WITH A KIND OF DELAY
带一类时滞项的生物种群扩散模型的行波解

Keywords: Differentio -integral equation,travelling wave solution,delay,populationdiffusion
微分-积分方程组
,行波解,时滞,种群扩散

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, the existence of the travelling wave solution $u(x,t)=U(z), w(x,t)=W(z),z=x\gamma -ct$ of the following differentic-integral equations is confirmed by the schauderfixed point theory, $$ \begin{array}{l} u_t=D\Delta u-\delta u+{w\over M}R_0\int_{-\infty}^{t}K(t-\tau)w_\tau d_\tau,\w_t=E\delta u(1-{w\over M})+(1-{w\over M})R_0\int_{-\infty}^{t}K(t-\tau)w_\tau d_\tau,\u\geq 0,\ 0\leq w< M. \end{array} $$ These equations describe the diffusion of a biological population with breeding on the plant and diffusion by flight. For the case where in the delay term $R_0\int_{-\infty}^{t}K(t-\tau)w_\tau d_\tau$ the kernel $K(t)$(the population breeding style) belongs to $L^1(0,\infty)$, it is obained that the limit $W(-\infty)$(final population density on the plant) is less than $M$. This conclusion is reasonable in bioloby.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133