%0 Journal Article
%T THE TRAVELLING WAVE SOLUTION OF THE POPULATION DIFFUSION MODEL WITH A KIND OF DELAY
带一类时滞项的生物种群扩散模型的行波解
%A Hai Yang HUANG
%A
黄海洋
%J 系统科学与数学
%D 1997
%I
%X In this paper, the existence of the travelling wave solution $u(x,t)=U(z), w(x,t)=W(z),z=x\gamma -ct$ of the following differentic-integral equations is confirmed by the schauderfixed point theory, $$ \begin{array}{l} u_t=D\Delta u-\delta u+{w\over M}R_0\int_{-\infty}^{t}K(t-\tau)w_\tau d_\tau,\w_t=E\delta u(1-{w\over M})+(1-{w\over M})R_0\int_{-\infty}^{t}K(t-\tau)w_\tau d_\tau,\u\geq 0,\ 0\leq w< M. \end{array} $$ These equations describe the diffusion of a biological population with breeding on the plant and diffusion by flight. For the case where in the delay term $R_0\int_{-\infty}^{t}K(t-\tau)w_\tau d_\tau$ the kernel $K(t)$(the population breeding style) belongs to $L^1(0,\infty)$, it is obained that the limit $W(-\infty)$(final population density on the plant) is less than $M$. This conclusion is reasonable in bioloby.
%K Differentio -integral equation
%K travelling wave solution
%K delay
%K populationdiffusion
微分-积分方程组
%K 行波解
%K 时滞
%K 种群扩散
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=0CD45CC5E994895A7F41A783D4235EC2&aid=9F0D5FA48DDB57A568BC6BE078EF5265&yid=5370399DC954B911&vid=BCA2697F357F2001&iid=0B39A22176CE99FB&sid=4DB1E72614E68564&eid=EDA22B444205D04A&journal_id=1000-0577&journal_name=系统科学与数学&referenced_num=1&reference_num=0