|
系统科学与数学 1991
AN EXISTENCE THEOREM ABOUT EFFICIENT EXTREMAL POINTS
|
Abstract:
设 Y,∧ 均是 R~m 中的非空集合,称 x∈Y 为 Y 的一个有效点,如不存在 y∈Y,y≠x使 x∈y+∧.记 Y 的有效点集为 E(Y,∧).称 x∈Y 为 Y 的一个极点,如不存在 y∈Y,z∈Y,y≠z 使 x∈(y,z).记 Y 的极点集为 Y_e。记 Y 的有效极点集为 E_Y=Y_e∩E(Y,∧).Yu,L.P.在1]中说明,若∧是凸锥,Y 是紧多面凸集,那么如果 E(Y,∧)≠φ,则Y 必有有效极点,即 E_Y≠φ.显然这个结论是线性多目标规划单纯形法的理论基础.