|
物理学报 2010
Identification of synthetic colors using derivative fluorescence spectroscopy and probabilistic neural networks
|
Abstract:
实验测量了食品色素胭脂红、苋菜红、诱惑红和工业色素苏丹红Ⅳ溶液分别在波长为300,400,440和380 nm的光激发下产生的荧光光谱.对这4种红色素的各8个溶液样本选取60个发射波长值所对应的荧光强度作为网络特征参数,训练、建立概率神经网络.据此,对32个色素溶液样本进行种类识别.为解决原始荧光光谱重叠造成识别准确率不高的问题,应用导数荧光光谱,将二阶导数光谱数据作为网络特征参数,建立网络,进行识别,识别准确率达100%.由此,提出了应用二阶导数荧光光谱结合概率神经网络对合成色素方便、快捷、准确地进行种