|
物理学报 2008
Langmuir probe measurement and theoretical studies on inductively coupled plasma in Ar-N2 discharge
|
Abstract:
In this article we use the Langmuir probe and kinetic model to study the electron energy distribution function (EEDF), the electron temperature, and the electronic density in the radio-frequency inductively coupled plasma of Ar-N2 discharge. It has been found that, with the increase of the N2 flow, the EEDF varies from the bi-temperature distribution to the tri-temperature distribution; the electron temperature drops monotonically at low pressures (p<1.3 Pa), while it first increases and then drops at high pressures (p>1.3 Pa). In addition, due to the recombination of electrons and nitrogen molecular ions, the electron density drops substantially at high pressures when a small amount of N2 is added to the gas mixture. Although the theoretically obtained electron temperature is high than the experimentally measured one, the theoretical model presents good predictions of the influences of N2 ratio in Ar-N2 mixture on the electron temperature and EEDF.