|
物理学报 1989
IMPROVEMENTS ON THE PERTURBED HARMONIC OSCILLATOR LADDER OPERATORS METHOD IN THE NON LINEAR QUANTUM FIELD THEORY AND THE LASER THEORY
|
Abstract:
当微优按Hermite多项式Hk的收敛级数作如下展开时,V(X)=b2X2+Σk CkHk(b1/2X), 则可将其微扰梯度算子方法应用于微扰谐振子波动方程的求解中.发现若将Hermite多项式基与二项式系数函数依量子数一起使用,则可大大简化微扰梯度与因子分解函数.因此,在不增加其复杂性的情况下,便可求得任意级微扰的本征值与本征函数的分析表示式.通过计算,本文给出了X的偶性微扰势函数V(X),为了说明如何应用改进后的微扰梯度算子方法,本文重新研究了其势函数为V(x)=x2+λX2/(1+gX2),且g>0时的Schr?dinger方程的求解过程.