|
数学物理学报(A辑) 2005
Convergence of B-valued Bi-random Dirichlet Series
|
Abstract:
By studying the convergence of B-valued Bi-random Dirichlet series under the following conditions: (i) {X_n(\omega)} satisfying the strong law of large numbers and 0<\mathop{\underline{\lim}}\limits_{n\to\infty}\Big\|\frac{\sum\limits_{i=1}^nEX_i}{n}\Big\| \leq\mathop{\overline{\lim}}\limits_{n\to\infty}\Big\|\frac{\sum\limits_{i=1}^nEX_i}{n}\Big\|<+\infty. (ii){X_{n}}is independent and unequally distributed and \mathop{\underline{\lim}}\limits_{n\to\infty}E||X_n||>0,\quad \sup\limits_{n\geq 1}E||X_n||^p <+\infty\quad (p>1),some simple and explicit formulae of the absciassa of convergence are obtained.