%0 Journal Article
%T Convergence of B-valued Bi-random Dirichlet Series
B -值双随机Dirichlet级数的收敛性
%A WANG Zhi-Gang
%A FANG Yong
%A
王志刚
%A 方勇
%J 数学物理学报(A辑)
%D 2005
%I
%X By studying the convergence of B-valued Bi-random Dirichlet series under the following conditions: (i) {X_n(\omega)} satisfying the strong law of large numbers and 0<\mathop{\underline{\lim}}\limits_{n\to\infty}\Big\|\frac{\sum\limits_{i=1}^nEX_i}{n}\Big\| \leq\mathop{\overline{\lim}}\limits_{n\to\infty}\Big\|\frac{\sum\limits_{i=1}^nEX_i}{n}\Big\|<+\infty. (ii){X_{n}}is independent and unequally distributed and \mathop{\underline{\lim}}\limits_{n\to\infty}E||X_n||>0,\quad \sup\limits_{n\geq 1}E||X_n||^p <+\infty\quad (p>1),some simple and explicit formulae of the absciassa of convergence are obtained.
%K Dirichlet serieszz
%K B-valued Bi-random Dirichlet series
%K
%K The strong law of large numberszz
%K Independencezz
%K Abscissa of convergencezz
Dirichlet级数
%K B
%K -值双随机Dirichlet级数
%K 强大数定律
%K 收敛横坐标
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=4DB553CDB5F521D8C921082E5C95EC80&aid=3B000AAF901A50F52D3A3F8A6AB3F902&yid=2DD7160C83D0ACED&vid=C5154311167311FE&iid=DF92D298D3FF1E6E&sid=74EAF208D0F1A3E3&eid=342E193BAB6B28C5&journal_id=1003-3998&journal_name=数学物理学报(A辑)&referenced_num=2&reference_num=8