全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Bimodal Gene Expression and Biomarker Discovery

DOI: 10.4137/CIN.S3456

Full-Text   Cite this paper   Add to My Lib

Abstract:

With insights gained through molecular profiling, cancer is recognized as a heterogeneous disease with distinct subtypes and outcomes that can be predicted by a limited number of biomarkers. Statistical methods such as supervised classification and machine learning identify distinguishing features associated with disease subtype but are not necessarily clear or interpretable on a biological level. Genes with bimodal transcript expression, however, may serve as excellent candidates for disease biomarkers with each mode of expression readily interpretable as a biological state. The recent article by Wang et al, entitled “The Bimodality Index: A Criterion for Discovering and Ranking Bimodal Signatures from Cancer Gene Expression Profiling Data,” provides a bimodality index for identifying and scoring transcript expression profiles as biomarker candidates with the benefit of having a direct relation to power and sample size. This represents an important step in candidate biomarker discovery that may help streamline the pipeline through validation and clinical application.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133