全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2012 

SWI/SNF-Like Chromatin Remodeling Factor Fun30 Supports Point Centromere Function in S. cerevisiae

DOI: 10.1371/journal.pgen.1002974

Full-Text   Cite this paper   Add to My Lib

Abstract:

Budding yeast centromeres are sequence-defined point centromeres and are, unlike in many other organisms, not embedded in heterochromatin. Here we show that Fun30, a poorly understood SWI/SNF-like chromatin remodeling factor conserved in humans, promotes point centromere function through the formation of correct chromatin architecture at centromeres. Our determination of the genome-wide binding and nucleosome positioning properties of Fun30 shows that this enzyme is consistently enriched over centromeres and that a majority of CENs show Fun30-dependent changes in flanking nucleosome position and/or CEN core micrococcal nuclease accessibility. Fun30 deletion leads to defects in histone variant Htz1 occupancy genome-wide, including at and around most centromeres. FUN30 genetically interacts with CSE4, coding for the centromere-specific variant of histone H3, and counteracts the detrimental effect of transcription through centromeres on chromosome segregation and suppresses transcriptional noise over centromere CEN3. Previous work has shown a requirement for fission yeast and mammalian homologs of Fun30 in heterochromatin assembly. As centromeres in budding yeast are not embedded in heterochromatin, our findings indicate a direct role of Fun30 in centromere chromatin by promoting correct chromatin architecture.

References

[1]  Sarma K, Reinberg D (2005) Histone variants meet their match. Nat Rev Mol Cell Biol 6: 139–149. doi: 10.1038/nrm1567
[2]  Torras-Llort M, Moreno-Moreno O, Azorin F (2009) Focus on the centre: the role of chromatin on the regulation of centromere identity and function. EMBO J 28: 2337–2348. doi: 10.1038/emboj.2009.174
[3]  Eirin-Lopez J, Ausio J (2007) H2A.Z-Mediated Genome-Wide Chromatin Specialization. Curr Genomics 8: 59–66. doi: 10.2174/138920207780076965
[4]  Flaus A, Martin DM, Barton GJ, Owen-Hughes T (2006) Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res 34: 2887–2905. doi: 10.1093/nar/gkl295
[5]  Schoor M, Schuster-Gossler K, Roopenian D, Gossler A (1999) Skeletal dysplasias, growth retardation, reduced postnatal survival, and impaired fertility in mice lacking the SNF2/SWI2 family member ETL1. Mech Dev 85: 73–83. doi: 10.1016/s0925-4773(99)00090-8
[6]  Hong F, Fang F, He X, Cao X, Chipperfield H, et al. (2009) Dissecting early differentially expressed genes in a mixture of differentiating embryonic stem cells. PLoS Comput Biol 5: e1000607 doi:10.1371/journal.pcbi.1000607.
[7]  Rowbotham SP, Barki L, Neves-Costa A, Santos F, Dean W, et al. (2011) Maintenance of silent chromatin through replication requires SWI/SNF-like chromatin remodeler SMARCAD1. Mol Cell 42: 285–296. doi: 10.1016/j.molcel.2011.02.036
[8]  Neves-Costa A, Will WR, Vetter AT, Miller JR, Varga-Weisz P (2009) The SNF2-family member Fun30 promotes gene silencing in heterochromatic loci. PLoS ONE 4: e8111 doi:10.1371/journal.pone.0008111.
[9]  Yu Q, Zhang X, Bi X (2011) Roles of chromatin remodeling factors in the formation and maintenance of heterochromatin structure. J Biol Chem 286: 14659–14669. doi: 10.1074/jbc.m110.183269
[10]  Awad S, Ryan D, Prochasson P, Owen-Hughes T, Hassan AH (2010) The Snf2 homolog Fun30 acts as a homodimeric ATP-dependent chromatin-remodeling enzyme. J Biol Chem 285: 9477–9484. doi: 10.1074/jbc.m109.082149
[11]  Stralfors A, Walfridsson J, Bhuiyan H, Ekwall K (2011) The FUN30 chromatin remodeler, Fft3, protects centromeric and subtelomeric domains from euchromatin formation. PLoS Genet 7: e1001334 doi: 10.1371/journal.pgen.1001334.
[12]  Verdaasdonk JS, Bloom K (2011) Centromeres: unique chromatin structures that drive chromosome segregation. Nat Rev Mol Cell Biol 12: 320–332. doi: 10.1038/nrm3107
[13]  Ekwall K (2007) Epigenetic control of centromere behavior. Annu Rev Genet 41: 63–81. doi: 10.1146/annurev.genet.41.110306.130127
[14]  Allshire RC, Karpen GH (2008) Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Genet 9: 923–937. doi: 10.1038/nrg2466
[15]  Fitzgerald-Hayes M, Clarke L, Carbon J (1982) Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs. Cell 29: 235–244. doi: 10.1016/0092-8674(82)90108-8
[16]  Collins KA, Castillo AR, Tatsutani SY, Biggins S (2005) De novo kinetochore assembly requires the centromeric histone H3 variant. Mol Biol Cell 16: 5649–5660. doi: 10.1091/mbc.e05-08-0771
[17]  Keith KC, Baker RE, Chen Y, Harris K, Stoler S, et al. (1999) Analysis of primary structural determinants that distinguish the centromere-specific function of histone variant Cse4p from histone H3. Mol Cell Biol 19: 6130–6139.
[18]  Ortiz J, Stemmann O, Rank S, Lechner J (1999) A putative protein complex consisting of Ctf19, Mcm21, and Okp1 represents a missing link in the budding yeast kinetochore. Genes Dev 13: 1140–1155. doi: 10.1101/gad.13.9.1140
[19]  Chen Y, Baker RE, Keith KC, Harris K, Stoler S, et al. (2000) The N terminus of the centromere H3-like protein Cse4p performs an essential function distinct from that of the histone fold domain. Mol Cell Biol 20: 7037–7048. doi: 10.1128/mcb.20.18.7037-7048.2000
[20]  Meluh PB, Koshland D (1997) Budding yeast centromere composition and assembly as revealed by in vivo cross-linking. Genes Dev 11: 3401–3412. doi: 10.1101/gad.11.24.3401
[21]  Furuyama S, Biggins S (2007) Centromere identity is specified by a single centromeric nucleosome in budding yeast. Proc Natl Acad Sci U S A 104: 14706–14711. doi: 10.1073/pnas.0706985104
[22]  Mizuguchi G, Xiao H, Wisniewski J, Smith MM, Wu C (2007) Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes. Cell 129: 1153–1164. doi: 10.1016/j.cell.2007.04.026
[23]  Camahort R, Li B, Florens L, Swanson SK, Washburn MP, et al. (2007) Scm3 is essential to recruit the histone h3 variant cse4 to centromeres and to maintain a functional kinetochore. Mol Cell 26: 853–865. doi: 10.1016/j.molcel.2007.05.013
[24]  Hewawasam G, Shivaraju M, Mattingly M, Venkatesh S, Martin-Brown S, et al. Psh1 Is an E3 Ubiquitin Ligase that Targets the Centromeric Histone Variant Cse4. Mol Cell 40: 444–454. doi: 10.1016/j.molcel.2010.10.014
[25]  Ranjitkar P, Press MO, Yi X, Baker R, MacCoss MJ, et al. An E3 ubiquitin ligase prevents ectopic localization of the centromeric histone H3 variant via the centromere targeting domain. Mol Cell 40: 455–464. doi: 10.1016/j.molcel.2010.09.025
[26]  Gkikopoulos T, Singh V, Tsui K, Awad S, Renshaw MJ, et al. (2011) The SWI/SNF complex acts to constrain distribution of the centromeric histone variant Cse4. EMBO J 30: 1919–1927. doi: 10.1038/emboj.2011.112
[27]  Durand-Dubief M, Sinha I, Fagerstrom-Billai F, Bonilla C, Wright A, et al. (2007) Specific functions for the fission yeast Sirtuins Hst2 and Hst4 in gene regulation and retrotransposon silencing. EMBO J 26: 2477–2488. doi: 10.1038/sj.emboj.7601690
[28]  Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25: 25–29.
[29]  Peters JM (2006) The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol 7: 644–656. doi: 10.1038/nrm1988
[30]  Ghosh SK, Poddar A, Hajra S, Sanyal K, Sinha P (2001) The IML3/MCM19 gene of Saccharomyces cerevisiae is required for a kinetochore-related process during chromosome segregation. Mol Genet Genomics 265: 249–257. doi: 10.1007/s004380000408
[31]  Pot I, Measday V, Snydsman B, Cagney G, Fields S, et al. (2003) Chl4p and iml3p are two new members of the budding yeast outer kinetochore. Mol Biol Cell 14: 460–476. doi: 10.1091/mbc.e02-08-0517
[32]  Bock LJ, Pagliuca C, Kobayashi N, Grove RA, Oku Y, et al. (2012) Cnn1 inhibits the interactions between the KMN complexes of the yeast kinetochore. Nat Cell Biol 14: 614–624. doi: 10.1038/ncb2495
[33]  Schleiffer A, Maier M, Litos G, Lampert F, Hornung P, et al. (2012) CENP-T proteins are conserved centromere receptors of the Ndc80 complex. Nat Cell Biol 14: 604–613. doi: 10.1038/ncb2493
[34]  Li Y, Bachant J, Alcasabas AA, Wang Y, Qin J, et al. (2002) The mitotic spindle is required for loading of the DASH complex onto the kinetochore. Genes Dev 16: 183–197. doi: 10.1101/gad.959402
[35]  Grishchuk EL, Efremov AK, Volkov VA, Spiridonov IS, Gudimchuk N, et al. (2008) The Dam1 ring binds microtubules strongly enough to be a processive as well as energy-efficient coupler for chromosome motion. Proc Natl Acad Sci U S A 105: 15423–15428. doi: 10.1073/pnas.0807859105
[36]  Westermann S, Drubin DG, Barnes G (2007) Structures and functions of yeast kinetochore complexes. Annu Rev Biochem 76: 563–591. doi: 10.1146/annurev.biochem.76.052705.160607
[37]  Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, et al. The genetic landscape of a cell. Science 327: 425–431. doi: 10.1126/science.1180823
[38]  Espelin CW, Simons KT, Harrison SC, Sorger PK (2003) Binding of the essential Saccharomyces cerevisiae kinetochore protein Ndc10p to CDEII. Mol Biol Cell 14: 4557–4568. doi: 10.1091/mbc.e02-08-0533
[39]  Pot I, Knockleby J, Aneliunas V, Nguyen T, Ah-Kye S, et al. (2005) Spindle checkpoint maintenance requires Ame1 and Okp1. Cell Cycle 4: 1448–1456. doi: 10.4161/cc.4.10.2106
[40]  Castano IB, Heath-Pagliuso S, Sadoff BU, Fitzhugh DJ, Christman MF (1996) A novel family of TRF (DNA topoisomerase I-related function) genes required for proper nuclear segregation. Nucleic Acids Res 24: 2404–2410. doi: 10.1093/nar/24.12.2404
[41]  Ouspenski II, Elledge SJ, Brinkley BR (1999) New yeast genes important for chromosome integrity and segregation identified by dosage effects on genome stability. Nucleic Acids Res 27: 3001–3008. doi: 10.1093/nar/27.15.3001
[42]  Stoler S, Keith KC, Curnick KE, Fitzgerald-Hayes M (1995) A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev 9: 573–586. doi: 10.1101/gad.9.5.573
[43]  Measday V, Hailey DW, Pot I, Givan SA, Hyland KM, et al. (2002) Ctf3p, the Mis6 budding yeast homolog, interacts with Mcm22p and Mcm16p at the yeast outer kinetochore. Genes Dev 16: 101–113. doi: 10.1101/gad.949302
[44]  Grewal SI (2010) RNAi-dependent formation of heterochromatin and its diverse functions. Curr Opin Genet Dev 20: 134–141. doi: 10.1016/j.gde.2010.02.003
[45]  Lacefield S, Lau DT, Murray AW (2009) Recruiting a microtubule-binding complex to DNA directs chromosome segregation in budding yeast. Nat Cell Biol 11: 1116–1120. doi: 10.1038/ncb1925
[46]  Mythreye K, Bloom KS (2003) Differential kinetochore protein requirements for establishment versus propagation of centromere activity in Saccharomyces cerevisiae. J Cell Biol 160: 833–843. doi: 10.1083/jcb.200211116
[47]  Hill A, Bloom K (1987) Genetic manipulation of centromere function. Mol Cell Biol 7: 2397–2405.
[48]  Doheny KF, Sorger PK, Hyman AA, Tugendreich S, Spencer F, et al. (1993) Identification of essential components of the S. cerevisiae kinetochore. Cell 73: 761–774. doi: 10.1016/0092-8674(93)90255-o
[49]  Ohkuni K, Kitagawa K (2011) Endogenous transcription at the centromere facilitates centromere activity in budding yeast. Curr Biol 21: 1695–1703. doi: 10.1016/j.cub.2011.08.056
[50]  LaCava J, Houseley J, Saveanu C, Petfalski E, Thompson E, et al. (2005) RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121: 713–724. doi: 10.1016/j.cell.2005.04.029
[51]  Houseley J, Tollervey D (2008) The nuclear RNA surveillance machinery: the link between ncRNAs and genome structure in budding yeast? Biochim Biophys Acta 1779: 239–246. doi: 10.1016/j.bbagrm.2007.12.008
[52]  Houseley J, Tollervey D (2009) The many pathways of RNA degradation. Cell 136: 763–776. doi: 10.1016/j.cell.2009.01.019
[53]  Houseley J, Kotovic K, El Hage A, Tollervey D (2007) Trf4 targets ncRNAs from telomeric and rDNA spacer regions and functions in rDNA copy number control. EMBO J 26: 4996–5006. doi: 10.1038/sj.emboj.7601921
[54]  Floer M, Wang X, Prabhu V, Berrozpe G, Narayan S, et al. (2010) A RSC/nucleosome complex determines chromatin architecture and facilitates activator binding. Cell 141: 407–418. doi: 10.1016/j.cell.2010.03.048
[55]  Kent NA, Adams S, Moorhouse A, Paszkiewicz K (2011) Chromatin particle spectrum analysis: a method for comparative chromatin structure analysis using paired-end mode next-generation DNA sequencing. Nucleic Acids Res 39: e26. doi: 10.1093/nar/gkq1183
[56]  Albert I, Mavrich TN, Tomsho LP, Qi J, Zanton SJ, et al. (2007) Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446: 572–576. doi: 10.1038/nature05632
[57]  Guillemette B, Bataille AR, Gevry N, Adam M, Blanchette M, et al. (2005) Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning. PLoS Biol 3: e384 doi:10.1371/journal.pbio.0030384.
[58]  Zhang H, Roberts DN, Cairns BR (2005) Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Cell 123: 219–231. doi: 10.1016/j.cell.2005.08.036
[59]  Raisner RM, Hartley PD, Meneghini MD, Bao MZ, Liu CL, et al. (2005) Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin. Cell 123: 233–248. doi: 10.1016/j.cell.2005.10.002
[60]  Li B, Pattenden SG, Lee D, Gutierrez J, Chen J, et al. (2005) Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling. Proc Natl Acad Sci U S A 102: 18385–18390. doi: 10.1073/pnas.0507975102
[61]  Grewal SI, Jia S (2007) Heterochromatin revisited. Nat Rev Genet 8: 35–46. doi: 10.1038/nrg2008
[62]  Kobor MS, Venkatasubrahmanyam S, Meneghini MD, Gin JW, Jennings JL, et al. (2004) A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin. PLoS Biol 2: e131 doi:10.1371/journal.pbio.0020131.
[63]  Krogan NJ, Keogh MC, Datta N, Sawa C, Ryan OW, et al. (2003) A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1. Mol Cell 12: 1565–1576. doi: 10.1016/s1097-2765(03)00497-0
[64]  Mizuguchi G, Shen X, Landry J, Wu WH, Sen S, et al. (2004) ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303: 343–348. doi: 10.1126/science.1090701
[65]  Papamichos-Chronakis M, Watanabe S, Rando OJ, Peterson CL (2011) Global regulation of H2A.Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity. Cell 144: 200–213. doi: 10.1016/j.cell.2010.12.021
[66]  Zofall M, Fischer T, Zhang K, Zhou M, Cui B, et al. (2009) Histone H2A.Z cooperates with RNAi and heterochromatin factors to suppress antisense RNAs. Nature 461: 419–422. doi: 10.1038/nature08321
[67]  Rangasamy D, Greaves I, Tremethick DJ (2004) RNA interference demonstrates a novel role for H2A.Z in chromosome segregation. Nat Struct Mol Biol 11: 650–655. doi: 10.1038/nsmb786
[68]  Greaves IK, Rangasamy D, Ridgway P, Tremethick DJ (2007) H2A.Z contributes to the unique 3D structure of the centromere. Proc Natl Acad Sci U S A 104: 525–530. doi: 10.1073/pnas.0607870104
[69]  Tsuchiya E, Uno M, Kiguchi A, Masuoka K, Kanemori Y, et al. (1992) The Saccharomyces cerevisiae NPS1 gene, a novel CDC gene which encodes a 160 kDa nuclear protein involved in G2 phase control. EMBO J 11: 4017–4026.
[70]  Hsu JM, Huang J, Meluh PB, Laurent BC (2003) The yeast RSC chromatin-remodeling complex is required for kinetochore function in chromosome segregation. Mol Cell Biol 23: 3202–3215. doi: 10.1128/mcb.23.9.3202-3215.2003
[71]  Tsuchiya E, Hosotani T, Miyakawa T (1998) A mutation in NPS1/STH1, an essential gene encoding a component of a novel chromatin-remodeling complex RSC, alters the chromatin structure of Saccharomyces cerevisiae centromeres. Nucleic Acids Res 26: 3286–3292. doi: 10.1093/nar/26.13.3286
[72]  Ogiwara H, Enomoto T, Seki M (2007) The INO80 chromatin remodeling complex functions in sister chromatid cohesion. Cell Cycle 6: 1090–1095. doi: 10.4161/cc.6.9.4130
[73]  Yoo EJ, Jin YH, Jang YK, Bjerling P, Tabish M, et al. (2000) Fission yeast hrp1, a chromodomain ATPase, is required for proper chromosome segregation and its overexpression interferes with chromatin condensation. Nucleic Acids Res 28: 2004–2011. doi: 10.1093/nar/28.9.2004
[74]  Walfridsson J, Bjerling P, Thalen M, Yoo EJ, Park SD, et al. (2005) The CHD remodeling factor Hrp1 stimulates CENP-A loading to centromeres. Nucleic Acids Res 33: 2868–2879. doi: 10.1093/nar/gki579
[75]  Okada M, Okawa K, Isobe T, Fukagawa T (2009) CENP-H-containing complex facilitates centromere deposition of CENP-A in cooperation with FACT and CHD1. Mol Biol Cell 20: 3986–3995. doi: 10.1091/mbc.e09-01-0065
[76]  Podhraski V, Campo-Fernandez B, Worle H, Piatti P, Niederegger H, et al. (2010) CenH3/CID incorporation is not dependent on the chromatin assembly factor CHD1 in Drosophila. PLoS ONE 5: e10120 doi:10.1371/journal.pone.0010120.
[77]  Verdaasdonk JS, Gardner R, Stephens AD, Yeh E, Bloom K (2012) Tension-dependent nucleosome remodeling at the pericentromere in yeast. Mol Biol Cell 23: 2560–2570. doi: 10.1091/mbc.e11-07-0651
[78]  Whitehouse I, Rando OJ, Delrow J, Tsukiyama T (2007) Chromatin remodelling at promoters suppresses antisense transcription. Nature 450: 1031–1035. doi: 10.1038/nature06391
[79]  D'Ambrosio C, Schmidt CK, Katou Y, Kelly G, Itoh T, et al. (2008) Identification of cis-acting sites for condensin loading onto budding yeast chromosomes. Genes Dev 22: 2215–2227. doi: 10.1101/gad.1675708
[80]  Lengronne A, Katou Y, Mori S, Yokobayashi S, Kelly GP, et al. (2004) Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430: 573–578. doi: 10.1038/nature02742
[81]  Guthrie C, Fink GR (1991) Guide to Yeast genetics and Molecular Biology; Abelson JN, Simon MI, eds Pasadena: ACADEMIC PRESS, INC.
[82]  Hegemann JH, Klein S, Heck S, Guldener U, Niedenthal RK, et al. (1999) A fast method to diagnose chromosome and plasmid loss in Saccharomyces cerevisiae strains. Yeast 15: 1009–1019.
[83]  Collart MA, Oliviero S (2001) Preparation of yeast RNA. Curr Protoc Mol Biol Chapter 13: Unit13 12.
[84]  Quail MA, Swerdlow H, Turner DJ (2009) Improved protocols for the illumina genome analyzer sequencing system. Curr Protoc Hum Genet Chapter 18: Unit 18 12. doi: 10.1002/0471142905.hg1802s62
[85]  Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18: 1509–1517. doi: 10.1101/gr.079558.108
[86]  Lefrancois P, Euskirchen GM, Auerbach RK, Rozowsky J, Gibson T, et al. (2009) Efficient yeast ChIP-Seq using multiplex short-read DNA sequencing. BMC Genomics 10: 37. doi: 10.1186/1471-2164-10-37
[87]  Krueger F, Andrews SR, Osborne CS (2011) Large scale loss of data in low-diversity illumina sequencing libraries can be recovered by deferred cluster calling. PLoS ONE 6: e16607 doi:10.1371/journal.pone.0016607.
[88]  Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25. doi: 10.1186/gb-2009-10-3-r25
[89]  Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, et al. (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320: 1344–1349. doi: 10.1126/science.1158441
[90]  Homann OR, Johnson AD MochiView: versatile software for genome browsing and DNA motif analysis. BMC Biol 8: 49. doi: 10.1186/1741-7007-8-49
[91]  Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, et al. (2006) TM4 microarray software suite. Methods Enzymol 411: 134–193. doi: 10.1016/s0076-6879(06)11009-5
[92]  Saeed AI, Sharov V, White J, Li J, Liang W, et al. (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34: 374–378.
[93]  Smid M, Dorssers LC (2004) GO-Mapper: functional analysis of gene expression data using the expression level as a score to evaluate Gene Ontology terms. Bioinformatics 20: 2618–2625. doi: 10.1093/bioinformatics/bth293
[94]  Nicol JW, Helt GA, Blanchard SG Jr, Raja A, Loraine AE (2009) The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasets. Bioinformatics 25: 2730–2731. doi: 10.1093/bioinformatics/btp472
[95]  Capiaghi C, Ho TV, Thoma F (2004) Kinetochores prevent repair of UV damage in Saccharomyces cerevisiae centromeres. Mol Cell Biol 24: 6907–6918. doi: 10.1128/mcb.24.16.6907-6918.2004
[96]  Nieduszynski CA, Knox Y, Donaldson AD (2006) Genome-wide identification of replication origins in yeast by comparative genomics. Genes Dev 20: 1874–1879. doi: 10.1101/gad.385306

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133