全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Landau Theory of Fermi Liquid in a Relativistic Nonlinear (σ, ω) Model at Finite Temperature

DOI: 10.4236/oalib.1102757, PP. 1-18

Subject Areas: Nuclear Physics, Theoretical Physics

Keywords: Quantum Hadrodynamics (QHD), DFT in Nuclear Matter, Nonlinear Mean-Field Theory, Landau Parameters at Finite Temperature

Full-Text   Cite this paper   Add to My Lib

Abstract

Fermi liquid properties of nuclear matter at finite temperature are studied by employing a relativistic nonlinear (σ, ω) model of quantum hadrodynamics (QHD). The relativistic nonlinear (σ, ω) model is one of the thermodynamically consistent QHD approximations. The QHD approximations maintain the fundamental requirement of density functional theory (DFT). Hence, the finite temperature nonlinear (σ, ω) mean-field approximation can be self-consistently constructed as a conserving approximation. Fermi liquid properties of nuclear matter, such as incompressibility, symmetry energy, first sound velocity and Landau parameters, are calculated with the nonlinear (σ, ω) mean-field approximation, and contributions of nonlinear interactions and finite temperature effects are discussed. Self-consistent structure to an employed approximation as conserving approximation is essential to examine physical quantities at finite temperature. Finite-temperature effects are not large at high density, however, the Fermi ground state, density of states and Fermi-liquid properties may be varied noticeably with a finite temperature (T‰10MeV) at low densities. Low-density finite-temperature and high-density finite-temperature experiments might exhibit physically different results, which should be investigated to understand nuclear many- body phenomena.

Cite this paper

Uechi, S. T. and Uechi, H. (2016). Landau Theory of Fermi Liquid in a Relativistic Nonlinear (σ, ω) Model at Finite Temperature. Open Access Library Journal, 3, e2757. doi: http://dx.doi.org/10.4236/oalib.1102757.

References

[1]  Walecka, J.D. (1974) A Theory of Highly Condensed Matter. Annals of Physics, 83, 491-529.
http://dx.doi.org/10.1016/0003-4916(74)90208-5
[2]  Haar, B. and Malfliet, R. (1987) Nucleons, Mesons and Deltas in Nuclear Matter a Relativistic Dirac-Brueckner Approach. Physics Reports, 149, 207-286.
http://dx.doi.org/10.1016/0370-1573(87)90085-8
[3]  Holinde, K. (1981) Two-Nucleon Forces and Nuclear Matter. Physics Reports, 68, 121-188.
http://dx.doi.org/10.1016/0370-1573(81)90188-5
[4]  Fetter, A.L. and Walecka, J.D. (2003) Quantum Theory of Many-Particle Systems. Dover Pub, New York.
[5]  Walecka, J.D. (1995) Theoretical Nuclear and Subnuclear Physics. Oxford University Press, New York.
[6]  Uechi, S.T. and Uechi, H. (2009) The Density-Dependent Correlations among Observables in Nuclear Matter and Hyperon-Rich Neutron Stars. Advances in High Energy, 2009, Article ID: 640919.
[7]  Serot, B.D. and Uechi, H. (1987) Neutron Stars in Relativistic Hadron-Quark Models. Annals of Physics, 179, 272-293.
http://dx.doi.org/10.1016/0003-4916(87)90137-0
[8]  Uechi, H., Uechi, S.T. and Serot, B.D. (2012) Neutron Stars: The Aspect of High Density Matter, Equations of State and Related Observables. Nova Science Pub, Hauppauge.
[9]  Jacob, M. and Thanh Van, J.T. (1982) Quark Matter Formation and Heavy Ion Collisions: A General Review and Status. Physics Reports, 88, 321-413.
http://dx.doi.org/10.1016/0370-1573(82)90083-7
[10]  Uechi, S.T. and Uechi, H. (2015) Hardon-Quark Hybrid Stars Constructed by the Nonlinear s-w-r Mean-Field Model and MIT-Bag Model. Open Access Library Journal, 2, e2012.
http://dx.doi.org/10.4236/oalib.1102012
[11]  Lourenco, O., Dura, M., Delfino, A. and Malheiro, M. (2011) Hadron-Quark Phase Transition in a Hadronic and Polyakov-Nambu-Jona Lasinio Models Perspective. Physical Review D, 84, Article ID: 125034.
http://dx.doi.org/10.1103/PhysRevD.84.125034
[12]  Weldon, H.A. (1982) Covariant Calculations at Finite Temperature: The Relativistic Plasma. Physical Review D, 26, 1394.
http://dx.doi.org/10.1103/PhysRevD.26.1394
[13]  Weldon, H.A. (1983) Simple Rules for Discontinuities in Finite-Temperature Field Theory. Physical Review D, 28, 2007.
[14]  Landsman, N.P. and Van Weert, Ch.G. (1987) Real- and Imaginary-Time Field Theory at Finite Temperature and Density. Physics Reports, 145, 141-249.
http://dx.doi.org/10.1016/0370-1573(87)90121-9
[15]  Furnstahl, R.J. and Serot, B.D. (1990) Covariant Mean-Field Calculations of Finite-Temperature Nuclear Matter. Physical Review C, 41, 262.
http://dx.doi.org/10.1103/PhysRevC.41.262
[16]  Furnstahl, R.J. and Serot, B.D. (1991) Covariant Feynman Rules at Finite Temperature: Time-Path Formulation. Physical Review C, 44, 2141-2174.
http://dx.doi.org/10.1103/PhysRevC.44.2141
[17]  Baym, G. and Kadanoff, L.P. (1961) Conservation Laws and Correlation Functions. Physical Review, 124, 287-299.
http://dx.doi.org/10.1103/PhysRev.124.287
[18]  Baym, G. (1962) Self-Consistent Approximations in Many-Body Systems. Physical Review, 127, 1391-1401.
http://dx.doi.org/10.1103/PhysRev.127.1391
[19]  Day, B.D. (1978) Current State of Nuclear Matter Calculations. Reviews of Modern Physics, 50, 495-521.
http://dx.doi.org/10.1103/RevModPhys.50.495
[20]  Hugenholtz, N.M. and Van Hove, L. (1958) A Theorem on the Single Particle Energy in a Fermi Gas with Interaction. Physica, 24, 363-376.
http://dx.doi.org/10.1016/S0031-8914(58)95281-9
[21]  Serot, B.D. (1992) Quantum Hadrodynamics. Reports on Progress in Physics, 55, 1855-1946.
http://dx.doi.org/10.1088/0034-4885/55/11/001
[22]  Uechi, H. (2001) Self-Consistent Structure in a Relativistic Dirac-Hartree-Fock Approximation. Nuclear Physics A, 696, 511-526.
http://dx.doi.org/10.1016/S0375-9474(01)01139-3
[23]  Uechi, H. (2004) The Theory of Conserving Approximations and the Density Functional Theory in Approximations for Nuclear Matter. Progress of Theoretical Physics, 111, 525-543.
http://dx.doi.org/10.1143/PTP.111.525
[24]  Migdal, A.B. (1968) Nuclear Theory: The Quasiparticle Method, W.A. Benjamin, Inc., New York.
Migdal, A.B. (1967) Theory of Finite Fermi Systems. John Wiley, New York.
[25]  Petkov, I.Z. and Stoitsov, M.V. (1991) Nuclear Density Functional Theory. Oxford University Press, Oxford.
[26]  Baym, G. and Pethick, C. (1978) Landau Fermi-Liquid Theory and Low Temperature Properties of Normal Liquid 3He. In: Bennemann, K.H. and Ketterson, J.B., Eds., The Physics of Liquid and Solid Helium, Part 2, Wiley, New York, 1-122.
[27]  Pines, D. and Nozières, P. (1989) The Theory of Quantum Liquids. Vol. 1, Addison-Wesley, California.
[28]  Nozieres, P. (1997) Theory of Interacting Fermi Systems. Perseus Publishing, Cambridge.
[29]  Kohn, W. and Sham, L.J. (1965) Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140, A1133-A1138.
http://dx.doi.org/10.1103/physrev.140.a1133
[30]  Kohn, W. (1999) Nobel Lecture: Electronic Structure of Matter-Wave Functions and Density Functionals. Reviews of Modern Physics, 71, 1253-1266.
http://dx.doi.org/10.1103/RevModPhys.71.1253
[31]  Uechi, S.T. and Uechi, H. (2010) Density-Dependent Properties of Hadronic Matter in an Extended Chiral (σ, π, ω) Mean-Field Model. Open Access Library Journal, 2, 1-18.
[32]  Serot, B.D. and Walecka, J.D. (1986) Advances in Nuclear Physics. Edited by Negele, J.W. and Vogt, E., Vol. 16, Plenum, New York.
[33]  Müller, H. and Serot, B.D. (1995) Phase Transitions in Warm, Asymmetric Nuclear Matter. Physical Review C, 52, 2072-2091.
http://dx.doi.org/10.1103/PhysRevC.52.2072
[34]  Matsui, T. (1981) Fermi-Liquid Properties of Nuclear Matter in a Relativistic Mean-Field Theory. Nuclear Physics A, 370, 365-388.
http://dx.doi.org/10.1016/0375-9474(81)90103-2
[35]  Uechi, H. (1992) Landau Fermi-Liquid Theory and Approximations in the Quantum Hadrodynamical Model. Nuclear Physics A, 541, 397-412.
http://dx.doi.org/10.1016/0375-9474(92)90183-K
[36]  Uechi, H. (1990) Constraints on the Self-Consistent Relativistic Fermi-Sea Particle Formalism in the Quantum Hadrodynamical Model. Physical Review C, 41, 744-752.
http://dx.doi.org/10.1103/PhysRevC.41.744
[37]  Uechi, H. (2008) Density-Dependent Correlations between Properties of Nuclear Matter and Neutron Stars in a Nonlinear σ-ω-ρ Mean-Field Approximation. Nuclear Physics A, 799, 181-209.
http://dx.doi.org/10.1016/j.nuclphysa.2007.11.003
[38]  Uechi, H. (2008) Correlations between Saturation Properties of Isospin Symmetric and Asymmetric Nuclear Matter in a Nonlinear σ-ω-ρ Mean-Field Approximation. Advanced Studies in Theoretical Physics, 2, 519-548.
[39]  Hakim, R. (2011) Introduction to Relativistic Statistical Mechanics, Classical and Quantum. World Scientific Publishing, Singapore.
[40]  Hooshyar, M.A., Reichstein, I. and Malik, F.B. (2005) Nuclear Fission and Cluster Radioactivity. Springer-Verlag, Berlin.
[41]  Krappe, H.J. and Pomorski, K. (2012) Theroy of Nuclear Fission. Springer-Verlag, Berlin.
http://dx.doi.org/10.1007/978-3-642-23515-3
[42]  Beck, C. Ed. (2014) Clusters in Nuclei. Volume 3, Springer-Verlag, Berlin.
[43]  Serot, B.D. (1979) A Relativistic Nuclear Field Theory with p and r Mesons. Physics Letters B, 86, 146-150. (Erratum: Physics Letters B, 87, 403.)
http://dx.doi.org/10.1016/0370-2693(79)90804-9
[44]  Serot, B.D. and Walecka, J.D. (1979) Properties of Finite Nuclei in a Relativistic Quantum Field Theory. Physics Letters B, 87, 172-176.
http://dx.doi.org/10.1016/0370-2693(79)90957-2
[45]  Uechi, H. (1989) Fermi-Liquid Properties of Nuclear Matter in a Dirac-Hartree-Fock Approximation. Nuclear Physics A, 501, 813-834.
http://dx.doi.org/10.1016/0375-9474(89)90162-0
[46]  Uechi, H. (2006) Properties of Nuclear and Neutron Matter in a Nonlinear s-w-r Mean-Field Approximation with Self-and Mixed-Interactions. Nuclear Physics A, 780, 247-273.
http://dx.doi.org/10.1016/j.nuclphysa.2006.10.015
[47]  Uechi, H. (2012) The Effective Chiral Model of Quantum Hadrodynamics Applied to Nuclear Matter and Neutron Stars. Journal of Applied Mathematics and Physics, 3, 114-123.
[48]  Serot, B.D. and Walecka, J.D. (1992) Chiral QHD with Vector Mesons. Acta Physica Polonica B, 23, 655-679.

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413