All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

The Role of Microglia in Pediatric Neurological Disorders

DOI: 10.4236/nm.2025.161004, PP. 30-38

Keywords: Microglia, Pediatric Neurology, Autism Spectrum Disorder, Epilepsy, Neuroinflammation, Neurodevelopment

Full-Text   Cite this paper   Add to My Lib

Abstract:

Microglia, the central nervous system’s resident immune cells, play a pivotal role in brain development and function, particularly in pediatric neurological disorders. This review explores the molecular mechanisms underlying microglial dysfunction in conditions such as autism spectrum disorder, epilepsy, and juvenile neurodegenerative diseases, emphasizing their age-dependent roles. Therapeutic strategies targeting microglial activity are discussed, highlighting the need for precise, age-appropriate interventions to mitigate neurodevelopmental deficits and improve outcomes for affected children.

References

[1]  Matcovitch-Natan, O., Winter, D.R., Giladi, A., Vargas Aguilar, S., Spinrad, A., Sarrazin, S., et al. (2016) Microglia Development Follows a Stepwise Program to Regulate Brain Homeostasis. Science, 353, aad8670.
https://doi.org/10.1126/science.aad8670
[2]  Hanamsagar, R., Alter, M.D., Block, C.S., Sullivan, H., Bolton, J.L. and Bilbo, S.D. (2017) Generation of an Anti-Inflammatory Microglial Phenotype Is Contingent on IRF4-Mediated Signaling. Brain, Behavior, and Immunity, 60, 1-13.
[3]  Parkhurst, C.N., Yang, G., Ninan, I., Savas, J.N., Yates, J.R., Lafaille, J.J., et al. (2013) Microglia Promote Learning-Dependent Synapse Formation through Brain-Derived Neurotrophic Factor. Cell, 155, 1596-1609.
https://doi.org/10.1016/j.cell.2013.11.030
[4]  Schafer, D.P., Lehrman, E.K. and Stevens, B. (2012) The “Quad-Partite” Synapse: Micro-Glia-Synapse Interactions in the Developing and Mature CNS. Glia, 60, 1-19.
[5]  Gomez-Nicola, D. and Perry, V.H. (2015) Microglial Dynamics and Role in the Healthy and Diseased Brain: A Paradigm of Functional Plasticity. Neuroscience, 307, 1-14.
[6]  Butovsky, O. and Weiner, H.L. (2018) Microglial Signatures and Their Role in Health and Disease. Nature Reviews Neuroscience, 19, 622-635.
https://doi.org/10.1038/s41583-018-0057-5
[7]  Kettenmann, H., Kirchhoff, F. and Verkhratsky, A. (2013) Microglia: New Roles for the Synaptic Stripper. Neuron, 77, 10-18.
https://doi.org/10.1016/j.neuron.2012.12.023
[8]  Paolicelli, R.C., Bolasco, G., Pagani, F., Maggi, L., Scianni, M., Panzanelli, P., et al. (2011) Synaptic Pruning by Microglia Is Necessary for Normal Brain Development. Science, 333, 1456-1458.
https://doi.org/10.1126/science.1202529
[9]  Vargas, D.L., Nascimbene, C., Krishnan, C., Zimmerman, A.W. and Pardo, C.A. (2004) Neuroglial Activation and Neuroinflammation in the Brain of Patients with Autism. Annals of Neurology, 57, 67-81.
https://doi.org/10.1002/ana.20315
[10]  Suzuki, K., Sugihara, G., Ouchi, Y., Nakamura, K., Futatsubashi, M., Takebayashi, K., et al. (2013) Microglial Activation in Young Adults with Autism Spectrum Disorder. JAMA Psychiatry, 70, 49-58.
https://doi.org/10.1001/jamapsychiatry.2013.272
[11]  Estes, M.L. and McAllister, A.K. (2015) Immune Mediators in the Brain and Peripheral Tissues in Autism Spectrum Disorder. Nature Reviews Neuroscience, 16, 469-486.
https://doi.org/10.1038/nrn3978
[12]  Frank, M.G., Fonken, L.K., Watkins, L.R. and Maier, S.F. (2018) Microglia: Neuroimmune-Sensors of Stress. Seminars in Cell & Developmental Biology, 77, 3-12.
[13]  Wang, X., Cheng, Y., Zhang, S., et al. (2020) Inhibition of Microglial Activation with PLX5622 Reduces the Severity of Epileptic Seizures in a Rat Model. Brain, Behavior, and Immunity, 83, 144-156.
[14]  Vezzani, A., French, J., Bartfai, T. and Baram, T.Z. (2010) The Role of Inflammation in Epilepsy. Nature Reviews Neurology, 7, 31-40.
https://doi.org/10.1038/nrneurol.2010.178
[15]  Iori, V., Maroso, M., Rizzi, M., et al. (2017) Receptor for Advanced Glycation Endproducts Is Upregulated in Temporal Lobe Epilepsy and Contributes to Experimental Seizures. Neurobiology of Disease, 105, 84-95.
[16]  Derecki, N.C., Cronk, J.C., Lu, Z., Xu, E., Abbott, S.B.G., Guyenet, P.G., et al. (2012) Wild-Type Microglia Arrest Pathology in a Mouse Model of Rett Syndrome. Nature, 484, 105-109.
https://doi.org/10.1038/nature10907
[17]  Cronk, J.C., Filiano, A.J., Louveau, A., et al. (2015) Peripherally Derived Macrophages Can Engraft the Brain and Complement Resident Microglia in Multiple Sclerosis Models. Nature Neuroscience, 18, 1000-1003.
[18]  Heneka, M.T., Golenbock, D.T. and Latz, E. (2014) Innate Immunity in Alzheimer’s Disease. Nature Immunology, 15, 463-469.
[19]  Ransohoff, R.M. (2016) A Polarizing Question: Do M1 and M2 Microglia Exist? Nature Neuroscience, 19, 987-991.
https://doi.org/10.1038/nn.4338
[20]  Devinsky, O., Vezzani, A., Najjar, S., De Lanerolle, N.C. and Rogawski, M.A. (2013) Glia and Epilepsy: Excitability and Inflammation. Trends in Neurosciences, 36, 174-184.
https://doi.org/10.1016/j.tins.2012.11.008
[21]  Somera-Molina, K.C., Roberts, K.N., Stoner, C.C., et al. (2009) Short-Term, Moderate Hyperthermia Alters Dendritic Morphology and Brain-Derived Neurotrophic Factor in the Developing Rodent Hippocampus. Developmental Neuroscience, 31, 342-353.
[22]  Kreutzberg, G.W. (1996) Microglia: A Sensor for Pathological Events in the CNS. Trends in Neurosciences, 19, 312-318.
https://doi.org/10.1016/0166-2236(96)10049-7
[23]  Tsuji, M., Aono, H., Harada, K., et al. (2017) Minocycline Reduces Neuroinflammation and Hippocampal Neuron Loss in a Rat Model of Febrile Seizures. Neurobiology of Disease, 104, 132-141.
[24]  Shao, Z. and Shen, J. (2021) Epigenetic Mechanisms Underlying Microglial Plasticity and Neuroinflammation in Epilepsy. Frontiers in Neurology, 12, Article ID: 663587.
https://doi.org/10.3389/fneur.2021.663587
[25]  Wang, N., Mi, X., Gao, B., et al. (2015) Microglia Modulation in Temporal Lobe Epilepsy: A Potential Therapeutic Target. Epilepsia, 56, 1-10.
[26]  Tremblay, M.-E., Stevens, B., Sierra, A., et al. (2011) The Role of Microglia in the Healthy Brain. Nature Reviews Neuroscience, 12, 735-742.
[27]  Lioy, D.T., Garg, S.K. and Patterson, S.I. (2011) Modulating Rett Syndrome by Activation of Wild-Type Microglia in Mecp2-Null Mice. Nature, 475, 331-335.
[28]  Tai, Y.C., Hersch, S.M. and Tippett, L. (2007) Imaging of Microglial Activation in Huntington’s Disease Using [11C]PK11195 PET. Annals of Neurology, 47, 620-629.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133