All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

The Role of Mir-34a and Mir-145 as Potential Biomarkers of Meningioma Recurrence

DOI: 10.4236/abb.2025.162002, PP. 13-29

Keywords: Meningiomas, Tumor Recurrence, microRNA, Cell Pluripotency

Full-Text   Cite this paper   Add to My Lib

Abstract:

The expression of miRNAs is associated with a variety of diseases, including neoplasms. In recent years, a large number of abnormally expressed miRNAs have been shown to be effective in understanding the oncogenesis, development, progression and prognosis of meningiomas. Furthermore, it is known that miRNAs act as oncogenes or tumor suppressors and that they regulate essential molecular pathways such as transcription factors involved in the pluripotency phenotype of stem cells. Therefore, the aim of this study was to analyze the expression of microRNAs miR-34a, miR-145 and miR-221 that regulate the pluripotency pathway of stem cells and correlate with tumor recurrence in grade I meningiomas. We used 30 samples, belonging to 15 patients who presented recurrences of grade I meningiomas. We observed low expression levels of miR-34a in the group of tumor recurrences when compared to control individuals and primary tumors, which may be associated with the tumor suppressor role of this miR. The miR-145 also showed decreased expression levels between the control group and the group of tumor recurrences. We also observed decreased expression levels in miR-145 between the control group and the primary tumors group. MiR-221 did not differ between the studied groups. MiR-34a and miR-145 microRNAs that regulate the stem cell pluripotency pathway are shown to be hypo expressed in tumor recurrences of grade I meningiomas and are shown to be good candidates for prognosis and recurrence biomarkers in meningiomas.

References

[1]  Saraf, S., McCarthy, B.J. and Villano, J.L. (2011) Update on Meningiomas. The Oncologist, 16, 1604-1613.
https://doi.org/10.1634/theoncologist.2011-0193
[2]  Ortiz‐Quintero, B. (2016) Cell‐Free microRNAs in Blood and Other Body Fluids, as Cancer Biomarkers. Cell Proliferation, 49, 281-303.
https://doi.org/10.1111/cpr.12262
[3]  Mayo Clinic (2020) Meningioma.
https://www.mayoclinic.org/diseases-conditions/meningioma/symptoms-causes/syc-20355643#dialogId1941967
[4]  Kishida, Y., Natsume, A., Kondo, Y., Takeuchi, I., An, B., Okamoto, Y., et al. (2011) Epigenetic Subclassification of Meningiomas Based on Genome-Wide DNA Methylation Analyses. Carcinogenesis, 33, 436-441.
https://doi.org/10.1093/carcin/bgr260
[5]  McNeill, K.A. (2016) Epidemiology of Brain Tumors. Neurologic Clinics, 34, 981-998.
https://doi.org/10.1016/j.ncl.2016.06.014
[6]  Baldi, I., Engelhardt, J., Bonnet, C., Bauchet, L., Berteaud, E., Grüber, A., et al. (2018) Epidemiology of Meningiomas. Neurochirurgie, 64, 5-14.
https://doi.org/10.1016/j.neuchi.2014.05.006
[7]  Porter, K.R., McCarthy, B.J., Freels, S., Kim, Y. and Davis, F.G. (2010) Prevalence Estimates for Primary Brain Tumors in the United States by Age, Gender, Behavior, and Histology. Neuro-Oncology, 12, 520-527.
https://doi.org/10.1093/neuonc/nop066
[8]  Louis, D.N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, W.K., et al. (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A Summary. Acta Neuropathologica, 131, 803-820.
https://doi.org/10.1007/s00401-016-1545-1
[9]  Barresi, V., Caffo, M. and Tuccari, G. (2016) Classification of Human Meningiomas: Lights, Shadows, and Future Perspectives. Journal of Neuroscience Research, 94, 1604-1612.
https://doi.org/10.1002/jnr.23801
[10]  Ogasawara, C., Philbrick, B.D. and Adamson, D.C. (2021) Meningioma: A Review of Epidemiology, Pathology, Diagnosis, Treatment, and Future Directions. Biomedicines, 9, Article No. 319.
https://doi.org/10.3390/biomedicines9030319
[11]  Greenberg, M.S. (2010) Handbook of Neurosurgery. 6th Edition, Thieme Publishers.
[12]  Perry, A. (2018) Meningiomas. In: Perry, A. and Brat, D.J., Eds., Practical Surgical Neuropathology: A Diagnostic Approach, 2nd Edition, Elsevier, 259-298.
https://doi.org/10.1016/b978-0-323-44941-0.00013-8
[13]  Goldbrunner, R., Minniti, G., Preusser, M., Jenkinson, M.D., Sallabanda, K., Houdart, E., et al. (2016) EANO Guidelines for the Diagnosis and Treatment of Meningiomas. The Lancet Oncology, 17, e383-e391.
https://doi.org/10.1016/s1470-2045(16)30321-7
[14]  Riemenschneider, M.J., Perry, A. and Reifenberger, G. (2006) Histological Classification and Molecular Genetics of Meningiomas. The Lancet Neurology, 5, 1045-1054.
https://doi.org/10.1016/s1474-4422(06)70625-1
[15]  Stawicki, S. and Guarnaschelli, J. (2017) Recurrent Brain Meningiomas. International Journal of Academic Medicine, 3, 115-118.
https://doi.org/10.4103/ijam.ijam_100_16
[16]  Fathi, A. and Roelcke, U. (2013) Meningioma. Current Neurology and Neuroscience Reports, 13, Article No. 337.
https://doi.org/10.1007/s11910-013-0337-4
[17]  Och, W., Szmuda, T., Sikorska, B., Springer, J., Jaskólski, D., Zakrzewska, M., et al. (2016) Recurrence-Associated Chromosomal Anomalies in Meningiomas: Single-Institution Study and a Systematic Review with Meta-Analysis. Neurologia i Neurochirurgia Polska, 50, 439-448.
https://doi.org/10.1016/j.pjnns.2016.08.003
[18]  Lee, Y., Liu, J., Patel, S., Cloughesy, T., Lai, A., Farooqi, H., et al. (2010) Genomic Landscape of Meningiomas. Brain Pathology, 20, 751-762.
https://doi.org/10.1111/j.1750-3639.2009.00356.x
[19]  Gallagher, M.J., Jenkinson, M.D., Brodbelt, A.R., Mills, S.J. and Chavredakis, E. (2016) WHO Grade 1 Meningioma Recurrence: Are Location and Simpson Grade Still Relevant? Clinical Neurology and Neurosurgery, 141, 117-121.
https://doi.org/10.1016/j.clineuro.2016.01.006
[20]  Mawrin, C. and Perry, A. (2010) Pathological Classification and Molecular Genetics of Meningiomas. Journal of Neuro-Oncology, 99, 379-391.
https://doi.org/10.1007/s11060-010-0342-2
[21]  Cimino, P.J. (2015) Malignant Progression to Anaplastic Meningioma: Neuropathology, Molecular Pathology, and Experimental Models. Experimental and Molecular Pathology, 99, 354-359.
https://doi.org/10.1016/j.yexmp.2015.08.007
[22]  Park, J. (2021) Epidemiology, Pathology, Clinical Features, and Diagnosis of Meningioma. UpToDate.
http://maadi-clinical.byethost8.com/d/topic.htm?path=epidemiology-pathology-clinical-features-and-diagnosis-of-meningioma&i=1
[23]  Slavik, H., Balik, V., Vrbkova, J., Rehulkova, A., Vaverka, M., Hrabalek, L., et al. (2020) Identification of Meningioma Patients at High Risk of Tumor Recurrence Using MicroRNA Profiling. Neurosurgery, 87, 1055-1063.
https://doi.org/10.1093/neuros/nyaa009
[24]  Haddad, A.F., Young, J.S., Kanungo, I., Sudhir, S., Chen, J., Raleigh, D.R., et al. (2020) WHO Grade I Meningioma Recurrence: Identifying High Risk Patients Using Histopathological Features and the MIB-1 Index. Frontiers in Oncology, 10, Article No. 1522.
https://doi.org/10.3389/fonc.2020.01522
[25]  Perry, A., Gutmann, D.H. and Reifenberger, G. (2004) Molecular Pathogenesis of Meningiomas. Journal of Neuro-Oncology, 70, 183-202.
https://doi.org/10.1007/s11060-004-2749-0
[26]  Youngblood, M.W., Miyagishima, D.F., Jin, L., Gupte, T., Li, C., Duran, D., et al. (2020) Associations of Meningioma Molecular Subgroup and Tumor Recurrence. Neuro-Oncology, 23, 783-794.
https://doi.org/10.1093/neuonc/noaa226
[27]  Pereira, B.J.A., Oba-Shinjo, S.M., de Almeida, A.N. and Marie, S.K.N. (2019) Molecular Alterations in Meningiomas: Literature Review. Clinical Neurology and Neurosurgery, 176, 89-96.
https://doi.org/10.1016/j.clineuro.2018.12.004
[28]  Gao, F., Shi, L., Russin, J., Zeng, L., Chang, X., He, S., et al. (2013) DNA Methylation in the Malignant Transformation of Meningiomas. PLOS ONE, 8, e54114.
https://doi.org/10.1371/journal.pone.0054114
[29]  Holland, H., Mocker, K., Ahnert, P., Kirsten, H., Hantmann, H., Koschny, R., et al. (2011) High Resolution Genomic Profiling and Classical Cytogenetics in a Group of Benign and Atypical Meningiomas. Cancer Genetics, 204, 541-549.
https://doi.org/10.1016/j.cancergen.2011.10.007
[30]  Bi, W.L., Mei, Y., Agarwalla, P.K., Beroukhim, R. and Dunn, I.F. (2016) Genomic and Epigenomic Landscape in Meningioma. Neurosurgery Clinics of North America, 27, 167-179.
https://doi.org/10.1016/j.nec.2015.11.009
[31]  Petrilli, A.M. and Fernández-Valle, C. (2015) Role of Merlin/NF2 Inactivation in Tumor Biology. Oncogene, 35, 537-548.
https://doi.org/10.1038/onc.2015.125
[32]  Domingues, P., González-Tablas, M., Otero, Á., Pascual, D., Ruiz, L., Miranda, D., et al. (2015) Genetic/Molecular Alterations of Meningiomas and the Signaling Pathways Targeted. Oncotarget, 6, 10671-10688.
https://doi.org/10.18632/oncotarget.3870
[33]  Matthias, S., Andreas, D. and Jefrey, L. (1995) Allelic Losses on Chromosomes 14, 10 and 1 in Atypical and Malignant Meningiomas: A Genetic Model of Meningioma Progression. Cancer Research, 55, 4696-4701.
[34]  Simon, M., Boström, J.P. and Hartmann, C. (2007) Molecular Genetics of Meningiomas: From Basic Research to Potencial Clinical Applications. Neurosurgery, 60, 787-798.
https://doi.org/10.1227/01.neu.0000255421.78431.ae
[35]  Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674.
https://doi.org/10.1016/j.cell.2011.02.013
[36]  Freitag, D., McLean, A.L., Simon, M., Koch, A., Grube, S., Walter, J., et al. (2017) NANOG Overexpression and Its Correlation with Stem Cell and Differentiation Markers in Meningiomas of Different WHO Grades. Molecular Carcinogenesis, 56, 1953-1964.
https://doi.org/10.1002/mc.22653
[37]  Shivapathasundram, G., Wickremesekera, A.C., Brasch, H.D., Marsh, R., Tan, S.T. and Itinteang, T. (2018) Expression of Embryonic Stem Cell Markers on the Microvessels of WHO Grade I Meningioma. Frontiers in Surgery, 5, Article No. 65.
https://doi.org/10.3389/fsurg.2018.00065
[38]  Chakraborty, C., Chin, K. and Das, S. (2016) miRNA-Regulated Cancer Stem Cells: Understanding the Property and the Role of miRNA in Carcinogenesis. Tumor Biology, 37, 13039-13048.
https://doi.org/10.1007/s13277-016-5156-1
[39]  Amaral, B.A., Nonaka, C.F.W., Freitas, R.A., Souza, L.B. and Pinto, L.P. (2010) MicroRNAs—Biogênese, Funções e seu papel potencial na carcinogênese oral. Odontologia Clínico-Científica, 9, 105-109.
[40]  Jorge, A.L., Pereira, E.R., Oliveira, C.S.D., Ferreira, E.D.S., Menon, E.T.N., Diniz, S.N., et al. (2021) MicroRNAs: Understanding Their Role in Gene Expression and Cancer. Einstein (São Paulo), 19, eRB5996.
https://doi.org/10.31744/einstein_journal/2021rb5996
[41]  Xia, L., Zhang, D., Du, R., Pan, Y., Zhao, L., Sun, S., et al. (2008) miR‐15b and miR‐16 Modulate Multidrug Resistance by Targeting BCL2 in Human Gastric Cancer Cells. International Journal of Cancer, 123, 372-379.
https://doi.org/10.1002/ijc.23501
[42]  Wang, L., Chen, S., Liu, Y., Zhang, H., Ren, N., Ma, R., et al. (2020) The Biological and Diagnostic Roles of MicroRNAs in Meningiomas. Reviews in the Neurosciences, 31, 771-778.
https://doi.org/10.1515/revneuro-2020-0023
[43]  Pardo, O.E. (2015) Meningioma Dissemination and Growth: A Role for microRNAs. Oncogene, 34, 1743-1744.
https://doi.org/10.1038/onc.2014.263
[44]  Gareev, I., Beylerli, O., Liang, Y., Xiang, H., Liu, C., Xu, X., et al. (2021) The Role of MicroRNAs in Therapeutic Resistance of Malignant Primary Brain Tumors. Frontiers in Cell and Developmental Biology, 9, Article ID: 740303.
https://doi.org/10.3389/fcell.2021.740303
[45]  Mitha, R. and Shamim, M.S. (2020) Significance of Micro-RNA Expression in Patients with Meningioma. Journal of the Pakistan Medical Association, 70, 1287-1288.
[46]  Galani, V., Lampri, E., Varouktsi, A., Alexiou, G., Mitselou, A. and Kyritsis, A.P. (2017) Genetic and Epigenetic Alterations in Meningiomas. Clinical Neurology and Neurosurgery, 158, 119-125.
https://doi.org/10.1016/j.clineuro.2017.05.002
[47]  El-Gewely, M., Andreassen, M., Walquist, M., Ursvik, A., Knutsen, E., Nystad, M., et al. (2016) Differentially Expressed MicroRNAs in Meningiomas Grades I and II Suggest Shared Biomarkers with Malignant Tumors. Cancers, 8, Article No. 31.
https://doi.org/10.3390/cancers8030031
[48]  Galani, V., Alexiou, G., Miliaras, G., Dimitriadis, E., Triantafyllou, E., Galani, A., et al. (2015) Expression of Stem Cell Marker Nestin and MicroRNA-21 in Meningiomas. Turkish Neurosurgery, 25, 574-577.
https://doi.org/10.5137/1019-5149.jtn.10800-14.2
[49]  Katar, S., Baran, O., Evran, S., Cevik, S., Akkaya, E., Baran, G., et al. (2017) Expression of miRNA-21, miRNA-107, miRNA-137 and miRNA-29b in Meningioma. Clinical Neurology and Neurosurgery, 156, 66-70.
https://doi.org/10.1016/j.clineuro.2017.03.016
[50]  Ludwig, N., Kim, Y., Mueller, S.C., Backes, C., Werner, T.V., Galata, V., et al. (2015) Posttranscriptional Deregulation of Signaling Pathways in Meningioma Subtypes by Differential Expression of miRNAs. Neuro-Oncology, 17, 1250-1260.
https://doi.org/10.1093/neuonc/nov014
[51]  Zhi, F., Shao, N., Li, B., Xue, L., Deng, D., Xu, Y., et al. (2016) A Serum 6-miRNA Panel as a Novel Non-Invasive Biomarker for Meningioma. Scientific Reports, 6, Article No. 32067.
https://doi.org/10.1038/srep32067
[52]  Zhi, F., Zhou, G., Wang, S., Shi, Y., Peng, Y., Shao, N., et al. (2012) A MicroRNA Expression Signature Predicts Meningioma Recurrence. International Journal of Cancer, 132, 128-136.
https://doi.org/10.1002/ijc.27658
[53]  Kopkova, A., Sana, J., Machackova, T., Vecera, M., Radova, L., Trachtova, K., et al. (2019) Cerebrospinal Fluid MicroRNA Signatures as Diagnostic Biomarkers in Brain Tumors. Cancers, 11, Article No. 1546.
https://doi.org/10.3390/cancers11101546
[54]  Chen, K.S., Stroup, E.K., Budhipramono, A., Rakheja, D., Nichols-Vinueza, D., Xu, L., et al. (2018) Mutations in microRNA Processing Genes in Wilms Tumors Derepress the IGF2 Regulator PLAG1. Genes & Development, 32, 996-1007.
https://doi.org/10.1101/gad.313783.118
[55]  Hart, M., Walch-Rückheim, B., Krammes, L., Kehl, T., Rheinheimer, S., Tänzer, T., et al. (2019) miR-34a as Hub of T Cell Regulation Networks. Journal for ImmunoTherapy of Cancer, 7, Article No. 187.
https://doi.org/10.1186/s40425-019-0670-5
[56]  Li, X.C., Hai, J.J., Tan, Y.J., Yue, Q.F. and Liu, L.J. (2019) MiR-218 Suppresses Metastasis and Invasion of Endometrial Cancer via Negatively Regulating ADD2. European Review for Medical and Pharmacological Sciences, 23, 1408-1417.
[57]  Hu, S., Wei, W., Yuan, J. and Cheng, J. (2019) Resveratrol Inhibits Proliferation in HBL-52 Meningioma Cells. OncoTargets and Therapy, 12, 11579-11586.
https://doi.org/10.2147/ott.s228513
[58]  Wang, X., Wang, E., Cao, J., Xiong, F., Yang, Y. and Liu, H. (2017) Mir-145 Inhibits the Epithelial-to-Mesenchymal Transition via Targeting ADAM19 in Human Glioblastoma. Oncotarget, 8, 92545-92554.
https://doi.org/10.18632/oncotarget.21442
[59]  Zeinali, T., Mansoori, B., Mohammadi, A. and Baradaran, B. (2019) Regulatory Mechanisms of miR-145 Expression and the Importance of Its Function in Cancer Metastasis. Biomedicine & Pharmacotherapy, 109, 195-207.
https://doi.org/10.1016/j.biopha.2018.10.037
[60]  Badr, E.A.E., Ali Assar, M.F., Gohar, S.F., Badr, M.H., Hathout, R.M. and El-kousy, S.M. (2018) The Clinical Impact of miRNA34a and P53 Gene Expression in Colon Cancer. Biochemistry and Biophysics Reports, 16, 88-95.
https://doi.org/10.1016/j.bbrep.2018.10.002
[61]  Duan, J., Zhou, K., Tang, X., Duan, J. and Zhao, L. (2016) MicroRNA-34a Inhibits Cell Proliferation and Induces Cell Apoptosis of Glioma Cells via Targeting of Bcl-2. Molecular Medicine Reports, 14, 432-438.
https://doi.org/10.3892/mmr.2016.5255
[62]  Wu, J., Wu, G., Lv, L., Ren, Y., Zhang, X., Xue, Y., et al. (2011) MicroRNA-34a Inhibits Migration and Invasion of Colon Cancer Cells via Targeting to Fra-1. Carcinogenesis, 33, 519-528.
https://doi.org/10.1093/carcin/bgr304
[63]  Kato, M., Paranjape, T., Ullrich, R., Nallur, S., Gillespie, E., Keane, K., et al. (2009) The miR-34 MicroRNA Is Required for the DNA Damage Response in Vivo in C. elegans and in Vitro in Human Breast Cancer Cells. Oncogene, 28, 2419-2424.
https://doi.org/10.1038/onc.2009.106
[64]  Stahlhut, C. and Slack, F.J. (2015) Combinatorial Action of MicroRNAs let-7 and miR-34 Effectively Synergizes with Erlotinib to Suppress Non-Small Cell Lung Cancer Cell Proliferation. Cell Cycle, 14, 2171-2180.
https://doi.org/10.1080/15384101.2014.1003008
[65]  Gao, H., Zhao, H. and Xiang, W. (2013) Expression Level of Human miR-34a Correlates with Glioma Grade and Prognosis. Journal of Neuro-Oncology, 113, 221-228.
https://doi.org/10.1007/s11060-013-1119-1
[66]  Ardekani, A.M. and Naeini, M.M. (2010) The Role of microRNAs in Human Diseases. Avicenna Journal of Medical Biotechnology, 2, 161-179.
[67]  Arunachalam, G., Upadhyay, R., Ding, H. and Triggle, C.R. (2015) MicroRNA Signature and Cardiovascular Dysfunction. Journal of Cardiovascular Pharmacology, 65, 419-429.
https://doi.org/10.1097/fjc.0000000000000178
[68]  Murnyák, B., Bognár, L., Klekner, Á. and Hortobágyi, T. (2015) Epigenetics of Meningiomas. BioMed Research International, 2015, Article ID: 532451.
https://doi.org/10.1155/2015/532451
[69]  He, M., Gao, L., Zhang, S., Tao, L., Wang, J., Yang, J., et al. (2013) Prognostic Significance of miR-34a and Its Target Proteins of FOXP1, P53, and BCL2 in Gastric MALT Lymphoma and DLBCL. Gastric Cancer, 17, 431-441.
https://doi.org/10.1007/s10120-013-0313-3
[70]  Werner, T.V., Hart, M., Nickels, R., Kim, Y., Menger, M.D., Bohle, R.M., et al. (2017) miR-34a-3p Alters Proliferation and Apoptosis of Meningioma Cells in Vitro and Is Directly Targeting SMAD4, FRAT1 and BCL2. Aging, 9, 932-954.
https://doi.org/10.18632/aging.101201
[71]  Mohammadian, F. and Negahdari, B. (2017) Isolation and Characterization of Mesenchymal Stem Cells and Its Antitumor Application on Ovarian Cancer Cell Line. Artificial Cells, Nanomedicine, and Biotechnology, 46, 1744-1753.
https://doi.org/10.1080/21691401.2017.1391824
[72]  Wang, C., Zhang, Z., Piao, S. and An, T. (2012) Role of MicroRNA in Induced Pluripotent Stem Cell. Hereditas (Beijing), 34, 1545-1550.
https://doi.org/10.3724/sp.j.1005.2012.01545
[73]  Balachandran, A.A., Larcher, L.M., Chen, S. and Veedu, R.N. (2020) Therapeutically Significant MicroRNAs in Primary and Metastatic Brain Malignancies. Cancers, 12, Article No. 2534.
https://doi.org/10.3390/cancers12092534
[74]  Kliese, N., Gobrecht, P., Pachow, D., Andrae, N., Wilisch-Neumann, A., Kirches, E., et al. (2012) miR-NA-145 Is Downregulated in Atypical and Anaplastic Meningiomas and Negatively Regulates Motility and Proliferation of Meningioma Cells. Oncogene, 32, 4712-4720.
https://doi.org/10.1038/onc.2012.468
[75]  Zheng, J., Pang, C., Du, W., Wang, L., Sun, L. and Xing, Z. (2020) An Allele of rs619586 Polymorphism in MALAT1 Alters the Invasiveness of Meningioma via Modulating the Expression of Collagen Type V Alpha (COL5A1). Journal of Cellular and Molecular Medicine, 24, 10223-10232.
https://doi.org/10.1111/jcmm.15637
[76]  Guzel Tanoglu, E. and Ozturk, S. (2021) Mir-145 Suppresses Epithelial-Mesenchymal Transition by Targeting Stem Cells in Ewing Sarcoma Cells. Bratislava Medical Journal, 122, 71-77.
https://doi.org/10.4149/bll_2021_009
[77]  Zhu, J., Qin, P., Cao, C., Dai, G., Xu, L. and Yang, D. (2021) Use of miR-145 and Testicular Nuclear Receptor 4 Inhibition to Reduce Chemoresistance to Docetaxel in Prostate Cancer. Oncology Reports, 45, 963-974.
https://doi.org/10.3892/or.2021.7925
[78]  Khamis, T., Diab, A.A.A., Zahra, M.H., El-Dahmy, S.E., Abd Al-Hameed, B.A., Abdelkhalek, A., et al. (2023) The Antiproliferative Activity of Adiantum Pedatum Extract and/or Piceatannol in Phenylhydrazine-Induced Colon Cancer in Male Albino Rats: The miR-145 Expression of the PI-3K/Akt/p53 and Oct4/Sox2/Nanog Pathways. Molecules, 28, Article No. 5543.
https://doi.org/10.3390/molecules28145543
[79]  Zhou, W., Yang, Y., Wang, W., Yang, C., Cao, Z., Lin, X., et al. (2024) Pseudogene OCT4-pg5 Upregulates OCT4B Expression to Promote Bladder Cancer Progression by Competing with miR-145-5p. Cell Cycle, 23, 645-661.
https://doi.org/10.1080/15384101.2024.2353554
[80]  Zhang, Q., Song, L., Huo, X., Wang, L., Zhang, G., Hao, S., et al. (2020) MicroRNA-221/222 Inhibits the Radiation-Induced Invasiveness and Promotes the Radiosensitivity of Malignant Meningioma Cells. Frontiers in Oncology, 10, Article No. 1441.
https://doi.org/10.3389/fonc.2020.01441

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133