The expression of miRNAs is associated with a variety of diseases, including neoplasms. In recent years, a large number of abnormally expressed miRNAs have been shown to be effective in understanding the oncogenesis, development, progression and prognosis of meningiomas. Furthermore, it is known that miRNAs act as oncogenes or tumor suppressors and that they regulate essential molecular pathways such as transcription factors involved in the pluripotency phenotype of stem cells. Therefore, the aim of this study was to analyze the expression of microRNAs miR-34a, miR-145 and miR-221 that regulate the pluripotency pathway of stem cells and correlate with tumor recurrence in grade I meningiomas. We used 30 samples, belonging to 15 patients who presented recurrences of grade I meningiomas. We observed low expression levels of miR-34a in the group of tumor recurrences when compared to control individuals and primary tumors, which may be associated with the tumor suppressor role of this miR. The miR-145 also showed decreased expression levels between the control group and the group of tumor recurrences. We also observed decreased expression levels in miR-145 between the control group and the primary tumors group. MiR-221 did not differ between the studied groups. MiR-34a and miR-145 microRNAs that regulate the stem cell pluripotency pathway are shown to be hypo expressed in tumor recurrences of grade I meningiomas and are shown to be good candidates for prognosis and recurrence biomarkers in meningiomas.
References
[1]
Saraf, S., McCarthy, B.J. and Villano, J.L. (2011) Update on Meningiomas. TheOncologist, 16, 1604-1613. https://doi.org/10.1634/theoncologist.2011-0193
[2]
Ortiz‐Quintero, B. (2016) Cell‐Free microRNAs in Blood and Other Body Fluids, as Cancer Biomarkers. CellProliferation, 49, 281-303. https://doi.org/10.1111/cpr.12262
[3]
Mayo Clinic (2020) Meningioma. https://www.mayoclinic.org/diseases-conditions/meningioma/symptoms-causes/syc-20355643#dialogId1941967
[4]
Kishida, Y., Natsume, A., Kondo, Y., Takeuchi, I., An, B., Okamoto, Y., et al. (2011) Epigenetic Subclassification of Meningiomas Based on Genome-Wide DNA Methylation Analyses. Carcinogenesis, 33, 436-441. https://doi.org/10.1093/carcin/bgr260
Baldi, I., Engelhardt, J., Bonnet, C., Bauchet, L., Berteaud, E., Grüber, A., et al. (2018) Epidemiology of Meningiomas. Neurochirurgie, 64, 5-14. https://doi.org/10.1016/j.neuchi.2014.05.006
[7]
Porter, K.R., McCarthy, B.J., Freels, S., Kim, Y. and Davis, F.G. (2010) Prevalence Estimates for Primary Brain Tumors in the United States by Age, Gender, Behavior, and Histology. Neuro-Oncology, 12, 520-527. https://doi.org/10.1093/neuonc/nop066
[8]
Louis, D.N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, W.K., et al. (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A Summary. ActaNeuropathologica, 131, 803-820. https://doi.org/10.1007/s00401-016-1545-1
[9]
Barresi, V., Caffo, M. and Tuccari, G. (2016) Classification of Human Meningiomas: Lights, Shadows, and Future Perspectives. JournalofNeuroscienceResearch, 94, 1604-1612. https://doi.org/10.1002/jnr.23801
[10]
Ogasawara, C., Philbrick, B.D. and Adamson, D.C. (2021) Meningioma: A Review of Epidemiology, Pathology, Diagnosis, Treatment, and Future Directions. Biomedicines, 9, Article No. 319. https://doi.org/10.3390/biomedicines9030319
[11]
Greenberg, M.S. (2010) Handbook of Neurosurgery. 6th Edition, Thieme Publishers.
[12]
Perry, A. (2018) Meningiomas. In: Perry, A. and Brat, D.J., Eds., PracticalSurgicalNeuropathology: ADiagnosticApproach, 2nd Edition, Elsevier, 259-298. https://doi.org/10.1016/b978-0-323-44941-0.00013-8
[13]
Goldbrunner, R., Minniti, G., Preusser, M., Jenkinson, M.D., Sallabanda, K., Houdart, E., et al. (2016) EANO Guidelines for the Diagnosis and Treatment of Meningiomas. TheLancetOncology, 17, e383-e391. https://doi.org/10.1016/s1470-2045(16)30321-7
[14]
Riemenschneider, M.J., Perry, A. and Reifenberger, G. (2006) Histological Classification and Molecular Genetics of Meningiomas. TheLancetNeurology, 5, 1045-1054. https://doi.org/10.1016/s1474-4422(06)70625-1
[15]
Stawicki, S. and Guarnaschelli, J. (2017) Recurrent Brain Meningiomas. InternationalJournalofAcademicMedicine, 3, 115-118. https://doi.org/10.4103/ijam.ijam_100_16
[16]
Fathi, A. and Roelcke, U. (2013) Meningioma. CurrentNeurologyandNeuroscienceReports, 13, Article No. 337. https://doi.org/10.1007/s11910-013-0337-4
[17]
Och, W., Szmuda, T., Sikorska, B., Springer, J., Jaskólski, D., Zakrzewska, M., et al. (2016) Recurrence-Associated Chromosomal Anomalies in Meningiomas: Single-Institution Study and a Systematic Review with Meta-Analysis. NeurologiaiNeurochirurgiaPolska, 50, 439-448. https://doi.org/10.1016/j.pjnns.2016.08.003
[18]
Lee, Y., Liu, J., Patel, S., Cloughesy, T., Lai, A., Farooqi, H., et al. (2010) Genomic Landscape of Meningiomas. BrainPathology, 20, 751-762. https://doi.org/10.1111/j.1750-3639.2009.00356.x
[19]
Gallagher, M.J., Jenkinson, M.D., Brodbelt, A.R., Mills, S.J. and Chavredakis, E. (2016) WHO Grade 1 Meningioma Recurrence: Are Location and Simpson Grade Still Relevant? ClinicalNeurologyandNeurosurgery, 141, 117-121. https://doi.org/10.1016/j.clineuro.2016.01.006
[20]
Mawrin, C. and Perry, A. (2010) Pathological Classification and Molecular Genetics of Meningiomas. JournalofNeuro-Oncology, 99, 379-391. https://doi.org/10.1007/s11060-010-0342-2
[21]
Cimino, P.J. (2015) Malignant Progression to Anaplastic Meningioma: Neuropathology, Molecular Pathology, and Experimental Models. ExperimentalandMolecularPathology, 99, 354-359. https://doi.org/10.1016/j.yexmp.2015.08.007
[22]
Park, J. (2021) Epidemiology, Pathology, Clinical Features, and Diagnosis of Meningioma. UpToDate. http://maadi-clinical.byethost8.com/d/topic.htm?path=epidemiology-pathology-clinical-features-and-diagnosis-of-meningioma&i=1
[23]
Slavik, H., Balik, V., Vrbkova, J., Rehulkova, A., Vaverka, M., Hrabalek, L., et al. (2020) Identification of Meningioma Patients at High Risk of Tumor Recurrence Using MicroRNA Profiling. Neurosurgery, 87, 1055-1063. https://doi.org/10.1093/neuros/nyaa009
[24]
Haddad, A.F., Young, J.S., Kanungo, I., Sudhir, S., Chen, J., Raleigh, D.R., et al. (2020) WHO Grade I Meningioma Recurrence: Identifying High Risk Patients Using Histopathological Features and the MIB-1 Index. FrontiersinOncology, 10, Article No. 1522. https://doi.org/10.3389/fonc.2020.01522
[25]
Perry, A., Gutmann, D.H. and Reifenberger, G. (2004) Molecular Pathogenesis of Meningiomas. JournalofNeuro-Oncology, 70, 183-202. https://doi.org/10.1007/s11060-004-2749-0
[26]
Youngblood, M.W., Miyagishima, D.F., Jin, L., Gupte, T., Li, C., Duran, D., et al. (2020) Associations of Meningioma Molecular Subgroup and Tumor Recurrence. Neuro-Oncology, 23, 783-794. https://doi.org/10.1093/neuonc/noaa226
[27]
Pereira, B.J.A., Oba-Shinjo, S.M., de Almeida, A.N. and Marie, S.K.N. (2019) Molecular Alterations in Meningiomas: Literature Review. ClinicalNeurologyandNeurosurgery, 176, 89-96. https://doi.org/10.1016/j.clineuro.2018.12.004
[28]
Gao, F., Shi, L., Russin, J., Zeng, L., Chang, X., He, S., et al. (2013) DNA Methylation in the Malignant Transformation of Meningiomas. PLOSONE, 8, e54114. https://doi.org/10.1371/journal.pone.0054114
[29]
Holland, H., Mocker, K., Ahnert, P., Kirsten, H., Hantmann, H., Koschny, R., et al. (2011) High Resolution Genomic Profiling and Classical Cytogenetics in a Group of Benign and Atypical Meningiomas. CancerGenetics, 204, 541-549. https://doi.org/10.1016/j.cancergen.2011.10.007
[30]
Bi, W.L., Mei, Y., Agarwalla, P.K., Beroukhim, R. and Dunn, I.F. (2016) Genomic and Epigenomic Landscape in Meningioma. NeurosurgeryClinicsofNorthAmerica, 27, 167-179. https://doi.org/10.1016/j.nec.2015.11.009
[31]
Petrilli, A.M. and Fernández-Valle, C. (2015) Role of Merlin/NF2 Inactivation in Tumor Biology. Oncogene, 35, 537-548. https://doi.org/10.1038/onc.2015.125
[32]
Domingues, P., González-Tablas, M., Otero, Á., Pascual, D., Ruiz, L., Miranda, D., et al. (2015) Genetic/Molecular Alterations of Meningiomas and the Signaling Pathways Targeted. Oncotarget, 6, 10671-10688. https://doi.org/10.18632/oncotarget.3870
[33]
Matthias, S., Andreas, D. and Jefrey, L. (1995) Allelic Losses on Chromosomes 14, 10 and 1 in Atypical and Malignant Meningiomas: A Genetic Model of Meningioma Progression. Cancer Research, 55, 4696-4701.
[34]
Simon, M., Boström, J.P. and Hartmann, C. (2007) Molecular Genetics of Meningiomas: From Basic Research to Potencial Clinical Applications. Neurosurgery, 60, 787-798. https://doi.org/10.1227/01.neu.0000255421.78431.ae
[35]
Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013
[36]
Freitag, D., McLean, A.L., Simon, M., Koch, A., Grube, S., Walter, J., et al. (2017) NANOG Overexpression and Its Correlation with Stem Cell and Differentiation Markers in Meningiomas of Different WHO Grades. MolecularCarcinogenesis, 56, 1953-1964. https://doi.org/10.1002/mc.22653
[37]
Shivapathasundram, G., Wickremesekera, A.C., Brasch, H.D., Marsh, R., Tan, S.T. and Itinteang, T. (2018) Expression of Embryonic Stem Cell Markers on the Microvessels of WHO Grade I Meningioma. FrontiersinSurgery, 5, Article No. 65. https://doi.org/10.3389/fsurg.2018.00065
[38]
Chakraborty, C., Chin, K. and Das, S. (2016) miRNA-Regulated Cancer Stem Cells: Understanding the Property and the Role of miRNA in Carcinogenesis. TumorBiology, 37, 13039-13048. https://doi.org/10.1007/s13277-016-5156-1
[39]
Amaral, B.A., Nonaka, C.F.W., Freitas, R.A., Souza, L.B. and Pinto, L.P. (2010) MicroRNAs—Biogênese, Funções e seu papel potencial na carcinogênese oral. OdontologiaClínico-Científica, 9, 105-109.
[40]
Jorge, A.L., Pereira, E.R., Oliveira, C.S.D., Ferreira, E.D.S., Menon, E.T.N., Diniz, S.N., et al. (2021) MicroRNAs: Understanding Their Role in Gene Expression and Cancer. Einstein (SãoPaulo), 19, eRB5996. https://doi.org/10.31744/einstein_journal/2021rb5996
[41]
Xia, L., Zhang, D., Du, R., Pan, Y., Zhao, L., Sun, S., et al. (2008) miR‐15b and miR‐16 Modulate Multidrug Resistance by Targeting BCL2 in Human Gastric Cancer Cells. InternationalJournalofCancer, 123, 372-379. https://doi.org/10.1002/ijc.23501
[42]
Wang, L., Chen, S., Liu, Y., Zhang, H., Ren, N., Ma, R., et al. (2020) The Biological and Diagnostic Roles of MicroRNAs in Meningiomas. ReviewsintheNeurosciences, 31, 771-778. https://doi.org/10.1515/revneuro-2020-0023
[43]
Pardo, O.E. (2015) Meningioma Dissemination and Growth: A Role for microRNAs. Oncogene, 34, 1743-1744. https://doi.org/10.1038/onc.2014.263
[44]
Gareev, I., Beylerli, O., Liang, Y., Xiang, H., Liu, C., Xu, X., et al. (2021) The Role of MicroRNAs in Therapeutic Resistance of Malignant Primary Brain Tumors. FrontiersinCellandDevelopmentalBiology, 9, Article ID: 740303. https://doi.org/10.3389/fcell.2021.740303
[45]
Mitha, R. and Shamim, M.S. (2020) Significance of Micro-RNA Expression in Patients with Meningioma. Journal of the Pakistan Medical Association, 70, 1287-1288.
[46]
Galani, V., Lampri, E., Varouktsi, A., Alexiou, G., Mitselou, A. and Kyritsis, A.P. (2017) Genetic and Epigenetic Alterations in Meningiomas. ClinicalNeurologyandNeurosurgery, 158, 119-125. https://doi.org/10.1016/j.clineuro.2017.05.002
[47]
El-Gewely, M., Andreassen, M., Walquist, M., Ursvik, A., Knutsen, E., Nystad, M., et al. (2016) Differentially Expressed MicroRNAs in Meningiomas Grades I and II Suggest Shared Biomarkers with Malignant Tumors. Cancers, 8, Article No. 31. https://doi.org/10.3390/cancers8030031
[48]
Galani, V., Alexiou, G., Miliaras, G., Dimitriadis, E., Triantafyllou, E., Galani, A., et al. (2015) Expression of Stem Cell Marker Nestin and MicroRNA-21 in Meningiomas. TurkishNeurosurgery, 25, 574-577. https://doi.org/10.5137/1019-5149.jtn.10800-14.2
[49]
Katar, S., Baran, O., Evran, S., Cevik, S., Akkaya, E., Baran, G., et al. (2017) Expression of miRNA-21, miRNA-107, miRNA-137 and miRNA-29b in Meningioma. ClinicalNeurologyandNeurosurgery, 156, 66-70. https://doi.org/10.1016/j.clineuro.2017.03.016
[50]
Ludwig, N., Kim, Y., Mueller, S.C., Backes, C., Werner, T.V., Galata, V., et al. (2015) Posttranscriptional Deregulation of Signaling Pathways in Meningioma Subtypes by Differential Expression of miRNAs. Neuro-Oncology, 17, 1250-1260. https://doi.org/10.1093/neuonc/nov014
[51]
Zhi, F., Shao, N., Li, B., Xue, L., Deng, D., Xu, Y., et al. (2016) A Serum 6-miRNA Panel as a Novel Non-Invasive Biomarker for Meningioma. ScientificReports, 6, Article No. 32067. https://doi.org/10.1038/srep32067
Kopkova, A., Sana, J., Machackova, T., Vecera, M., Radova, L., Trachtova, K., et al. (2019) Cerebrospinal Fluid MicroRNA Signatures as Diagnostic Biomarkers in Brain Tumors. Cancers, 11, Article No. 1546. https://doi.org/10.3390/cancers11101546
[54]
Chen, K.S., Stroup, E.K., Budhipramono, A., Rakheja, D., Nichols-Vinueza, D., Xu, L., et al. (2018) Mutations in microRNA Processing Genes in Wilms Tumors Derepress the IGF2 Regulator PLAG1. Genes&Development, 32, 996-1007. https://doi.org/10.1101/gad.313783.118
[55]
Hart, M., Walch-Rückheim, B., Krammes, L., Kehl, T., Rheinheimer, S., Tänzer, T., et al. (2019) miR-34a as Hub of T Cell Regulation Networks. JournalforImmunoTherapyofCancer, 7, Article No. 187. https://doi.org/10.1186/s40425-019-0670-5
[56]
Li, X.C., Hai, J.J., Tan, Y.J., Yue, Q.F. and Liu, L.J. (2019) MiR-218 Suppresses Metastasis and Invasion of Endometrial Cancer via Negatively Regulating ADD2. European Review for Medical and Pharmacological Sciences, 23, 1408-1417.
[57]
Hu, S., Wei, W., Yuan, J. and Cheng, J. (2019) Resveratrol Inhibits Proliferation in HBL-52 Meningioma Cells. OncoTargetsandTherapy, 12, 11579-11586. https://doi.org/10.2147/ott.s228513
[58]
Wang, X., Wang, E., Cao, J., Xiong, F., Yang, Y. and Liu, H. (2017) Mir-145 Inhibits the Epithelial-to-Mesenchymal Transition via Targeting ADAM19 in Human Glioblastoma. Oncotarget, 8, 92545-92554. https://doi.org/10.18632/oncotarget.21442
[59]
Zeinali, T., Mansoori, B., Mohammadi, A. and Baradaran, B. (2019) Regulatory Mechanisms of miR-145 Expression and the Importance of Its Function in Cancer Metastasis. Biomedicine&Pharmacotherapy, 109, 195-207. https://doi.org/10.1016/j.biopha.2018.10.037
[60]
Badr, E.A.E., Ali Assar, M.F., Gohar, S.F., Badr, M.H., Hathout, R.M. and El-kousy, S.M. (2018) The Clinical Impact of miRNA34a and P53 Gene Expression in Colon Cancer. BiochemistryandBiophysicsReports, 16, 88-95. https://doi.org/10.1016/j.bbrep.2018.10.002
[61]
Duan, J., Zhou, K., Tang, X., Duan, J. and Zhao, L. (2016) MicroRNA-34a Inhibits Cell Proliferation and Induces Cell Apoptosis of Glioma Cells via Targeting of Bcl-2. MolecularMedicineReports, 14, 432-438. https://doi.org/10.3892/mmr.2016.5255
[62]
Wu, J., Wu, G., Lv, L., Ren, Y., Zhang, X., Xue, Y., et al. (2011) MicroRNA-34a Inhibits Migration and Invasion of Colon Cancer Cells via Targeting to Fra-1. Carcinogenesis, 33, 519-528. https://doi.org/10.1093/carcin/bgr304
[63]
Kato, M., Paranjape, T., Ullrich, R., Nallur, S., Gillespie, E., Keane, K., et al. (2009) The miR-34 MicroRNA Is Required for the DNA Damage Response in Vivo in C. elegans and in Vitro in Human Breast Cancer Cells. Oncogene, 28, 2419-2424. https://doi.org/10.1038/onc.2009.106
[64]
Stahlhut, C. and Slack, F.J. (2015) Combinatorial Action of MicroRNAs let-7 and miR-34 Effectively Synergizes with Erlotinib to Suppress Non-Small Cell Lung Cancer Cell Proliferation. CellCycle, 14, 2171-2180. https://doi.org/10.1080/15384101.2014.1003008
[65]
Gao, H., Zhao, H. and Xiang, W. (2013) Expression Level of Human miR-34a Correlates with Glioma Grade and Prognosis. JournalofNeuro-Oncology, 113, 221-228. https://doi.org/10.1007/s11060-013-1119-1
[66]
Ardekani, A.M. and Naeini, M.M. (2010) The Role of microRNAs in Human Diseases. Avicenna Journal of Medical Biotechnology, 2, 161-179.
[67]
Arunachalam, G., Upadhyay, R., Ding, H. and Triggle, C.R. (2015) MicroRNA Signature and Cardiovascular Dysfunction. JournalofCardiovascularPharmacology, 65, 419-429. https://doi.org/10.1097/fjc.0000000000000178
[68]
Murnyák, B., Bognár, L., Klekner, Á. and Hortobágyi, T. (2015) Epigenetics of Meningiomas. BioMedResearchInternational, 2015, Article ID: 532451. https://doi.org/10.1155/2015/532451
[69]
He, M., Gao, L., Zhang, S., Tao, L., Wang, J., Yang, J., et al. (2013) Prognostic Significance of miR-34a and Its Target Proteins of FOXP1, P53, and BCL2 in Gastric MALT Lymphoma and DLBCL. GastricCancer, 17, 431-441. https://doi.org/10.1007/s10120-013-0313-3
[70]
Werner, T.V., Hart, M., Nickels, R., Kim, Y., Menger, M.D., Bohle, R.M., et al. (2017) miR-34a-3p Alters Proliferation and Apoptosis of Meningioma Cells in Vitro and Is Directly Targeting SMAD4, FRAT1 and BCL2. Aging, 9, 932-954. https://doi.org/10.18632/aging.101201
[71]
Mohammadian, F. and Negahdari, B. (2017) Isolation and Characterization of Mesenchymal Stem Cells and Its Antitumor Application on Ovarian Cancer Cell Line. ArtificialCells, Nanomedicine, andBiotechnology, 46, 1744-1753. https://doi.org/10.1080/21691401.2017.1391824
[72]
Wang, C., Zhang, Z., Piao, S. and An, T. (2012) Role of MicroRNA in Induced Pluripotent Stem Cell. Hereditas (Beijing), 34, 1545-1550. https://doi.org/10.3724/sp.j.1005.2012.01545
[73]
Balachandran, A.A., Larcher, L.M., Chen, S. and Veedu, R.N. (2020) Therapeutically Significant MicroRNAs in Primary and Metastatic Brain Malignancies. Cancers, 12, Article No. 2534. https://doi.org/10.3390/cancers12092534
[74]
Kliese, N., Gobrecht, P., Pachow, D., Andrae, N., Wilisch-Neumann, A., Kirches, E., et al. (2012) miR-NA-145 Is Downregulated in Atypical and Anaplastic Meningiomas and Negatively Regulates Motility and Proliferation of Meningioma Cells. Oncogene, 32, 4712-4720. https://doi.org/10.1038/onc.2012.468
[75]
Zheng, J., Pang, C., Du, W., Wang, L., Sun, L. and Xing, Z. (2020) An Allele of rs619586 Polymorphism in MALAT1 Alters the Invasiveness of Meningioma via Modulating the Expression of Collagen Type V Alpha (COL5A1). JournalofCellularandMolecularMedicine, 24, 10223-10232. https://doi.org/10.1111/jcmm.15637
[76]
Guzel Tanoglu, E. and Ozturk, S. (2021) Mir-145 Suppresses Epithelial-Mesenchymal Transition by Targeting Stem Cells in Ewing Sarcoma Cells. BratislavaMedicalJournal, 122, 71-77. https://doi.org/10.4149/bll_2021_009
[77]
Zhu, J., Qin, P., Cao, C., Dai, G., Xu, L. and Yang, D. (2021) Use of miR-145 and Testicular Nuclear Receptor 4 Inhibition to Reduce Chemoresistance to Docetaxel in Prostate Cancer. OncologyReports, 45, 963-974. https://doi.org/10.3892/or.2021.7925
[78]
Khamis, T., Diab, A.A.A., Zahra, M.H., El-Dahmy, S.E., Abd Al-Hameed, B.A., Abdelkhalek, A., et al. (2023) The Antiproliferative Activity of Adiantum Pedatum Extract and/or Piceatannol in Phenylhydrazine-Induced Colon Cancer in Male Albino Rats: The miR-145 Expression of the PI-3K/Akt/p53 and Oct4/Sox2/Nanog Pathways. Molecules, 28, Article No. 5543. https://doi.org/10.3390/molecules28145543
[79]
Zhou, W., Yang, Y., Wang, W., Yang, C., Cao, Z., Lin, X., et al. (2024) Pseudogene OCT4-pg5 Upregulates OCT4B Expression to Promote Bladder Cancer Progression by Competing with miR-145-5p. CellCycle, 23, 645-661. https://doi.org/10.1080/15384101.2024.2353554
[80]
Zhang, Q., Song, L., Huo, X., Wang, L., Zhang, G., Hao, S., et al. (2020) MicroRNA-221/222 Inhibits the Radiation-Induced Invasiveness and Promotes the Radiosensitivity of Malignant Meningioma Cells. FrontiersinOncology, 10, Article No. 1441. https://doi.org/10.3389/fonc.2020.01441