Machine Learning (ML) and Artificial Intelligence (AI) are transforming the healthcare landscape by enabling data-driven decision-making, enhancing diagnostic accuracy, and improving patient outcomes. This article reviews the current state of AI and ML in healthcare, explores their applications in diagnosis, treatment planning, and patient management, and discusses the challenges and future potential of these technologies in the medical field.
References
[1]
Crabtree, M. (2023) Artificial Intelligence (AI) vs Machine Learning (ML): A Comparative Guide. Data Camp. https://www.datacamp.com/blog/the-difference-between-ai-and-machine-learning
[2]
Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., et al. (2017) Dermatologist-level Classification of Skin Cancer with Deep Neural Networks. Nature, 542, 115-118. https://doi.org/10.1038/nature21056
[3]
Zhu, W., Xie, L., Han, J. and Guo, X. (2020) The Application of Deep Learning in Cancer Prognosis Prediction. Cancers, 12, Article 603. https://doi.org/10.3390/cancers12030603
[4]
Obermeyer, Z. and Emanuel, E.J. (2016) Predicting the Future—Big Data, Machine Learning, and Clinical Medicine. New England Journal of Medicine, 375, 1216-1219. https://doi.org/10.1056/nejmp1606181
[5]
Topol, E.J. (2019) High-Performance Medicine: The Convergence of Human and Artificial Intelligence. Nature Medicine, 25, 44-56. https://doi.org/10.1038/s41591-018-0300-7
[6]
Chen, H., Engkvist, O., Wang, Y., Olivecrona, M. and Blaschke, T. (2018) The Rise of Deep Learning in Drug Discovery. Drug Discovery Today, 23, 1241-1250. https://doi.org/10.1016/j.drudis.2018.01.039
[7]
Komorowski, M., Celi, L.A., Badawi, O., Gordon, A.C. and Faisal, A.A. (2018) The Artificial Intelligence Clinician Learns Optimal Treatment Strategies for Sepsis in Intensive Care. Nature Medicine, 24, 1716-1720. https://doi.org/10.1038/s41591-018-0213-5
[8]
Price, W.N. and Cohen, I.G. (2019) Privacy in the Age of Medical Big Data. Nature Medicine, 25, 37-43. https://doi.org/10.1038/s41591-018-0272-7
[9]
Obermeyer, Z., Powers, B., Vogeli, C. and Mullainathan, S. (2019) Dissecting Racial Bias in an Algorithm Used to Manage the Health of Populations. Science, 366, 447-453. https://doi.org/10.1126/science.aax2342
[10]
Shortliffe, E.H. and Sepúlveda, M.J. (2018) Clinical Decision Support in the Era of Artificial Intelligence. JAMA, 320, 2199-2200. https://doi.org/10.1001/jama.2018.17163
[11]
Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S. and Yang, G. (2019) XAI—Explainable Artificial Intelligence. Science Robotics, 4, eaay7120. https://doi.org/10.1126/scirobotics.aay7120
[12]
Chaddad, A., Peng, J., Xu, J. and Bouridane, A. (2023) Survey of Explainable AI Techniques in Healthcare. Sensors, 23, Article 634. https://doi.org/10.3390/s23020634
[13]
Keesara, S., Jonas, A. and Schulman, K. (2020) COVID-19 and Health Care’s Digital Revolution. New England Journal of Medicine, 382, e82. https://doi.org/10.1056/nejmp2005835
[14]
Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., et al. (2018) AI4People—An Ethical Framework for a Good AI Society: Opportunities, Risks, Principles, and Recommendations. Minds and Machines, 28, 689-707. https://doi.org/10.1007/s11023-018-9482-5