|
空气/水稳定的锂金属负极研究进展
|
Abstract:
锂金属作为最理想的二次电池负极材料,以锂金属为负极的锂金属电池是应对未来高能量密度储能器件需求挑战的有效解决方案之一。但是,锂金属电池的实际应用受到锂金属固有缺点的限制,例如在循环过程中锂枝晶的过度生长,生产过程中对潮湿空气的敏感性,都存在潜在的安全性问题,本文总结了生产制造阶段设计空气/水稳定的锂金属负极的研究进展。
Lithium metal, as the most ideal anode material for rechargeable batteries, is an effective solution for the challenges of future high-energy density storage demand. Nevertheless, the practical application of lithium metal batteries suffers from the inherent limitations of pure lithium such as excessive dendrites growth and sensitivity to the humid atmosphere in cycling and handling which involves potential security concerns. This paper summarizes the research progress in designing air/water stabilized lithium metal cathodes at the manufacturing stage.
[1] | Kozen, A.C., Lin, C.F., Zhao, O., Lee, S.B., Rubloff, G.W. and Noked, M. (2017) Stabilization of Lithium Metal Anodes by Hybrid Artificial Solid Electrolyte Interphase. Chemistry of Materials, 29, 6298-6307.
https://doi.org/10.1021/acs.chemmater.7b01496 |
[2] | Cheng, X.B. and Zhang, Q. (2015) Dendrite-Free Lithium Metal Anodes: Stable Solid Electrolyte Interphases for High-Efficiency Batteries. Journal of Materials Chemistry A, 3, 7207-7209. https://doi.org/10.1039/C5TA00689A |
[3] | Park, K. and Goodenough, J.B. (2017) Den-drite-Suppressed Lithium Plating from a Liquid Electrolyte via Wetting of Li3N. Advanced Energy Materials, 7, Article ID: 1700732. https://doi.org/10.1002/aenm.201700732 |
[4] | Guo, Y., Li, H. and Zhai, T. (2017) Reviving Lithi-um-Metal Anodes for Next-Generation High-Energy Batteries. Advanced Materials, 29, Article ID: 1700007. https://doi.org/10.1002/adma.201700007 |
[5] | Tarascon, J.M. and Armand, M. (2001) Issues and Challenges Fac-ing Rechargeable Lithium Batteries. Nature, 414, 359-367. https://doi.org/10.1038/35104644 |
[6] | Ye, H., Xin, S., Yin, Y.X. and Guo, Y.G. (2017) Advanced Porous Carbon Materials for High-Efficient Lithium Metal Anodes. Advanced Energy Materials, 7, Article ID: 1700530. https://doi.org/10.1002/aenm.201700530 |
[7] | Han, J.G., Lee, J.B., Cha, A., Lee, T.K., Cho, W., Chae, S., Kang, S.J., Kwak, S.K., Cho, J., Hong, S.Y. and Choi, N.S. (2018) Un-symmetrical Fluorinated Malonatoborate as an Amphoteric Additive for High-Energy-Density Lithium-Ion Batteries. En-ergy & Environmental Science, 11, 1552-1562. https://doi.org/10.1039/C8EE00372F |
[8] | Xu, G., Pang, C., Chen, B., Ma, J., Wang, X., Chai, J., Wang, Q., An, W., Zhou, X., Cui, G. and Chen, L. (2018) Prescribing Functional Addi-tives for Treating the Poor Performances of High-Voltage (5 V-Class) LiNi0.5Mn1.5O4/MCMB Li-Ion Batteries. Ad-vanced Energy Materials, 8, Article ID: 1701398. https://doi.org/10.1002/aenm.201701398 |
[9] | Xu, G., Liu, Z., Zhang, C., Cui, G. and Chen, L. (2015) Strategies for Improving the Cyclability and Thermo-Stability of LiMn2O4-Based Batteries at Elevated Temperatures. Journal of Materials Chemistry A, 3, 4092-4123.
https://doi.org/10.1039/C4TA06264G |
[10] | Braga, M.H., Grundish, N.S., Murchisona, A.J. and Goodenough, J.B. (2017) Alternative Strategy for a Safe Rechargeable Battery. Energy & Environmental Science, 10, 331-336. https://doi.org/10.1039/C6EE02888H |
[11] | Pang, Q., Liang, X., Kwok, C.Y. and Nazar, L.F. (2016) Advances in Lithium-Sulfur Batteries Based on Multifunctional Cathodes and Electrolytes. Nature Energy, 1, Article No. 16132. https://doi.org/10.1038/nenergy.2016.132 |
[12] | Yoo, D.J., Kim, K.J. and Choi, J.W. (2018) The Synergistic Effect of Cation and Anion of an Ionic Liquid Additive for Lithium Metal Anodes. Advanced Energy Materials, 8, Article ID: 1702744. https://doi.org/10.1002/aenm.201702744 |
[13] | Harry, K.J., Hallinan, D.T., Parkinson, D.Y., MacDowell, A.A. and Balsara, N.P. (2014) Detection of Subsurface Structures Underneath Dendrites Formed on Cycled Lithium Metal Electrodes. Nature Materials, 13, 69-73.
https://doi.org/10.1038/nmat3793 |
[14] | Lin, D., Liu, Y. and Cui, Y. (2017) Reviving the Lithium Metal Anode for High-Energy Batteries. Nature Nanotechnology, 12, 194-206. https://doi.org/10.1038/nnano.2017.16 |
[15] | Zhao, J., Liao, L., Shi, F., Lei, T., Chen, G., Pei, A., Sun, J., Yan, K., Zhou, G., Xie, J., Liu, C., Li, Y., Liang, Z., Bao, Z. and Cui, Y. (2017) Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability. Journal of the American Chemical Society, 139, 11550-11558. https://doi.org/10.1021/jacs.7b05251 |
[16] | Cheng, X.B., Zhang, R., Zhao, C.Z. and Zhang, Q. (2017) Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chemical Reviews, 117, 10403-10473. https://doi.org/10.1021/acs.chemrev.7b00115 |
[17] | Zhang, K., Lee, G.H., Park, M., Li, W. and Kang, Y.M. (2016) Recent Developments of the Lithium Metal Anode for Rechargeable Non-Aqueous Batteries. Ad-vanced Energy Materials, 6, Article ID: 1600811.
https://doi.org/10.1002/aenm.201600811 |
[18] | Rehnlund, D., Lindgren, F., Bohme, S., Nordh, T., Zou, Y., Petters-son, J., Bexell, U., Boman, M., Edstrom, K. and Nyholm, L. (2017) Lithium Trapping in Alloy Forming Electrodes and Current Collectors for Lithium Based Batteries. Energy & Environmental Science, 10, 1350-1357. https://doi.org/10.1039/C7EE00244K |
[19] | Lu, J., Chen, Z., Ma, Z., Pan, F., Curtiss, L.A. and Amine, K. (2016) The Role of Nanotechnology in the Development of Battery Materials for Electric Vehicles. Nature Nanotechnology, 11, 1031-1038.
https://doi.org/10.1038/nnano.2016.207 |
[20] | Xu, W., Wang, J., Ding, F., Chen, X., Nasybulin, E., Zhang, Y. and Zhang, J.G. (2014) Lithium Metal Anodes for Rechargeable Batteries. Energy & Environmental Science, 7, 513-537. https://doi.org/10.1039/C3EE40795K |
[21] | Flynn, J.C. and Marsh, C. (1998) Development and Experimental Re-sults of Continuous Coating Technology for Lithium-Ion Electrodes. Proceedings of the 13th Annual Battery Conference on Applications and Advances, Long Beach, 16 January 1998, 81-84. https://doi.org/10.1109/BCAA.1998.653845 |
[22] | Hawley, W.B. and Li, J. (2019) Electrode Manufacturing for Lithium-Ion Batteries—Analysis of Current and Next Generation Processing. Journal of Energy Storage, 25, Article ID: 100862. https://doi.org/10.1016/j.est.2019.100862 |
[23] | Guo, X.Q., Wang, M., Meng, F., Tang, Y.F., Tian, S., Yang, H.L., Jiang, G.Q. and Zhu, J.L. (2016) Rational Design and Synthesis of an Amino-Functionalized Hydro-gen-Bonded Network with an ACO Zeolite-Like Topology for Gas Storage. CrystEngComm, 18, 5616-5619. https://doi.org/10.1039/C6CE01164K |
[24] | Li, T., Liu, H. and Shi, P.Q. (2018) Zhang, Recent Progress in Car-bon/Lithium Metal Composite Anode for Safe Lithium Metal Batteries. Rare Metals, 37, 449-458. https://doi.org/10.1007/s12598-018-1049-3 |
[25] | Xu, C.X. and Jiang, J.J. (2021) Designing Electrolytes for Lithi-um Metal Batteries with Rational Interface Stability. Rare Metals, 40, 243-245. https://doi.org/10.1007/s12598-020-01629-5 |
[26] | Guo, Y., Liu, N., Sun, T., Cui, H., Wang, J., Wang, M., Wang, M. and Tang, Y. (2020) Rational Structural Design of ZnOHF Nanotube-Assembled Microsphere Adsorbents for High-Efficient Pb2+ Removal. CrystEngComm, 22, 7543-7548. https://doi.org/10.1039/D0CE01279C |
[27] | Heslot, N.F.F., Cazabat, A.M. and Levinson, P. (1990) Experiments on Wetting on the Scale of Nanometers: Influence of the Surface Energy. Physical Review Letters, 65, 599-602. https://doi.org/10.1103/PhysRevLett.65.599 |
[28] | Huntsberger, J.R. (1981) Surface Energy, Wetting and Adhesion. The Journal of Adhesion, 12, 3-12.
https://doi.org/10.1080/00218468108071184 |
[29] | Shen, X., Li, Y., Qian, T., Liu, J., Zhou, J., Yan, C. and Goodenough, J.B. (2019) Lithium Anode Stable in Air for Low-Cost Fabrication of a Dendrite-Free Lithium Battery. Nature Communications, 10, Article No. 900.
https://doi.org/10.1038/s41467-019-08767-0 |
[30] | Xu, Q., Lin, J., Ye, C., Jin, X., Ye, D., Lu, Y., Zhou, G., Qiu, Y. and Li, W. (2020) Air-Stable and Dendrite-Free Lithium Metal Anodes Enabled by a Hybrid Interphase of C60 and Mg. Advanced Energy Materials, 10, Article ID: 1903292. https://doi.org/10.1002/aenm.201903292 |
[31] | Zhao, J., Zhou, G., Yan, K., Xie, J., Li, Y., Liao, L., Jin, Y., Liu, K., Hsu, P.C., Wang, J., Cheng, H.M. and Cui, Y. (2017) Air-Stable and Freestanding Lithium Alloy/Graphene Foil as an Alternative to Lithium Metal Anodes. Nature Nanotechnology, 12, 993-999. https://doi.org/10.1038/nnano.2017.129 |
[32] | Jiang, Z., Jin, L., Han, Z., Hu, W., Zeng, Z., Sun, Y. and Xie, J. (2019) Facile Generation of Polymer-alloy Hybrid Layers for Dendrite-Free Lithium-Metal Anodes with Im-proved Moisture Stability. Angewandte Chemie International Edition, 58, 11374-11378. https://doi.org/10.1002/anie.201905712 |
[33] | Liang, J., Li, X., Zhao, Y., Goncharova, L.V., Li, W., Adair, K.R., Banis, M.N., Hu, Y., Sham, T.K., Huang, H., Zhang, L., Zhao, S., Lu, S., Li, R. and Sun, X. (2019) An Air-Stable and Dendrite-Free Li Anode for Highly Stable All-Solid-State Sulfide-Based Li Batteries. Advanced Energy Materials, 9, Ar-ticle ID: 1902125.
https://doi.org/10.1002/aenm.201902125 |
[34] | Qu, S., Jia, W., Wang, Y., Li, C., Yao, Z., Li, K., Liu, Y., Zou, W., Zhou, F., Wang, Z. and Li, J. (2019) Air-Stable Lithium Metal Anode with Sputtered Aluminum Coating Layer for Im-proved Performance. Electrochimica Acta, 317, 120-127. https://doi.org/10.1016/j.electacta.2019.05.138 |
[35] | Yang, T., Jia, P., Liu, Q., Zhang, L., Du, C., Chen, J., Ye, H., Li, X., Li, Y., Shen, T., Tang, Y. and Huang, J. (2018) Air-Stable Lithium Spheres Produced by Electrochemical Plating. Angewandte Chemie, 130, 12932-12935.
https://doi.org/10.1002/ange.201807355 |
[36] | Zhang, Y., Lv, W., Huang, Z., Zhou, G., Deng, Y., Zhang, J., Zhang, C., Hao, B., Qi, Q., He, Y.B., Kang, F. and Yang, Q.H. (2019) An Air-Stable and Waterproof Lithium Metal Anode Enabled by Wax Composite Packaging. Science Bulletin, 64, 910-917. https://doi.org/10.1016/j.scib.2019.05.025 |
[37] | Liu, X., Liu, J., Qian, T., Chen, H. and Yan, C. (2020) Novel Or-ganophosphate-Derived Dual-Layered Interface Enabling Air-Stable and Dendrite-Free Lithium Metal Anode. Advanced Materials, 32, Article ID: 1902724.
https://doi.org/10.1002/adma.201902724 |
[38] | Li, J., Daniel, C., An, S.J. and Wood, D. (2016) Evaluation Residual Moisture in Lithium-Ion Battery Electrodes and Its Effect on Electrode Performance. MRS Advances, 1, 1029-1035. https://doi.org/10.1557/adv.2016.6 |
[39] | Zhao, F., Han, F., Zhang, S.W. and Zhang, Z. (2020) A Novel Online Moisture Monitoring Method for Vacuum Drying of Lithium Ion Battery Powder. Powder Technology, 375, 244-248. https://doi.org/10.1016/j.powtec.2020.07.046 |
[40] | Kang, J.H., Lee, J., Jung, J.W., Park, J., Jang, T., Kim, H.S., Nam, J.S., Lim, H., Yoon, K.R., Ryu, W.H., Kim, I.D. and Byon, H.R. (2020) Lithium-Air Batteries: Air-Breathing Challenges and Perspective. ACS Nano, 14, 14549-14578.
https://doi.org/10.1021/acsnano.0c07907 |
[41] | Temprano, I., Liu, T., Petrucco, E., Ellison, J.H.J., Kim, G., Jónsson, E. and Grey, C.P. (2020) Toward Reversible and Moisture-Tolerant Aprotic Lithium-Air Batteries. Joule, 4, 2501-2520. https://doi.org/10.1016/j.joule.2020.09.021 |
[42] | Zhang, T., Imanishi, N., Shimonishi, Y., Hirano, A., Xie, J., Takeda, Y., Yamamoto, O. and Sammes, N. (2010) Stability of a Water-Stable Lithium Metal Anode for a Lithium-Air Battery with Acetic Acid-Water Solutions. Journal of The Electrochemical Society, 157, A214- A218. https://doi.org/10.1149/1.3271103 |
[43] | Zhang, T., Imanishi, N., Hasegawa, S., Hirano, A., Xie, J., Takeda, Y., Yamamoto, O. and Sammes, N. (2009) Water-Stable Lithium Anode with the Three-Layer Construction for Aqueous Lithium-Air Secondary Batteries. Electrochemical and Solid-State Letters, 12, Article No. A132-A135. https://doi.org/10.1149/1.3125285 |
[44] | Xiao, Y., Xu, R., Yan, C., Liang, Y., Ding, J.F. and Huang, J.Q. (2020) Waterproof Lithium Metal Anode Enabled by Cross-Linking Encapsulation. Science Bulletin, 65, 909-916. https://doi.org/10.1016/j.scib.2020.02.022 |
[45] | Guo, H., Hou, G., Dai, L., Yao, Y., Wei, C., Liang, Z., Si, P. and Ci, L. (2020) Stable Lithium Anode of Li-O2 Batteries in a Wet Electrolyte Enabled by a High-Current Treatment. The Journal of Physical Chemistry Letters, 11, 172-178.
https://doi.org/10.1021/acs.jpclett.9b02749 |
[46] | Dong, L., Nie, L. and Liu, W. (2020) Water-Stable Lithium Metal Anodes with Ultrahigh-Rate Capability Enabled by a Hydrophobic Graphene Architecture. Advanced Materials, 32, Arti-cle ID: 1908494.
https://doi.org/10.1002/adma.201908494 |
[47] | Liu, T., Feng, X., Jin, X., Shao, M., Su, Y., Zhang, Y. and Zhang, X. (2019) Protecting the Lithium Metal Anode for a Safe Flexible Lithium-Air Battery in Ambient Air. Angewandte Chemie, 131, 18408-18413.
https://doi.org/10.1002/ange.201911229 |
[48] | Wu, J., Rao, Z., Liu, X., Shen, Y., Fang, C., Yuan, L., Li, Z., Zhang, W., Xie, X. and Huang, Y. (2021) Polycationic Polymer Layer for Air-Stable and Dendrite-Free Li Metal Anodes in Carbonate Electrolytes. Advanced Materials, 33, Article ID: 2007428. https://doi.org/10.1002/adma.202007428 |
[49] | Qin, K., Holguin, K., Mohammadiroudbari, M., Huang, J., Kim, E.Y.S., Hall, R. and Luo, C. (2021) Strategies in Structure and Electrolyte Design for High-Performance Lithium Metal Batteries. Advanced Functional Materials, 31, Article ID: 2009694. https://doi.org/10.1002/adfm.202009694 |
[50] | Janek, J. and Zeier, W.G. (2016) A Solid Future for Battery Devel-opment. Nature Energy, 1, Article No. 16141.
https://doi.org/10.1038/nenergy.2016.141 |
[51] | Schnell, J., Tietz, F., Singer, C., Hofer, A., Billot, N. and Reinhart, G. (2019) Prospects of Production Technologies and Manufacturing Costs of Oxide-Based All-Solid-State Lithium Bat-teries. Energy & Environmental Science, 12, 1818-1833. https://doi.org/10.1039/C8EE02692K |
[52] | Visco, S.J., Nimon, V.Y., Petrov, A., Pridatko, K., Goncharenko, N., Nimon, E., De Jonghe, L., Volfkovich, Y.M. and Bograchev, D.A. (2014) Aqueous and Nonaqueous Lithium-Air Batteries Enabled by Water-Stable Lithium Metal Electrodes. Jour-nal of Solid State Electrochemistry, 18, 1443-1456. https://doi.org/10.1007/s10008-014-2427-x |