|
纳米氮化铝粉体的制备及应用研究进展
|
Abstract:
[1] | 麦久翔, 许贵银. 氮化铝陶瓷[J]. 上海航天, 1993(6): 37-40+54. |
[2] | Sang, H.L., Yi, J.H., Kim, J.H., et al. (2011) Preparation of Nanometer AlN Powders by Combining Spray Pyrolysis with Carbothermal Reduction and Nitridation. Ceramics International, 37, 1967-1971.
https://doi.org/10.1016/j.ceramint.2011.03.052 |
[3] | 姜珩, 康志君, 谢元锋, 等. 铝粉直接氮化法制备氮化铝粉末[J]. 稀有金属, 2013, 37(3): 58-62. |
[4] | 张伟儒, 陈建荣. 宽禁带半导体AlN晶体发展现状及展望[J]. 新材料产业, 2015(12): 18-23. |
[5] | Huang, D., Liu, Z., Jonathan, H., et al. (2019) High Thermal Conductive AlN Substrate for Heat Dissipation in High-Power LEDs. Ceramics International, 45, 1412-1415. https://doi.org/10.1016/j.ceramint.2018.09.171 |
[6] | 蓝键, 马思琪, 李邑柯, 等. 氮化铝粉末制备与应用研究进展[J]. 陶瓷学报, 2021, 42(1): 44-53. |
[7] | 蒋周青, 刘玉柱, 薛丽青, 等. 氮化铝粉体制备技术的研究进展[J]. 半导体技术, 2019, 44(8): 577-582+589. |
[8] | 刘藜, 向道平. 三聚氰胺对直接氮化法合成氮化铝纳米线的影响[J]. 硅酸盐通报, 2022, 41(3): 1078-1084. |
[9] | 刘新宽, 马明亮, 周敬恩. 碳热还原法制备氮化铝反应机制的研究进展[J]. 硅酸盐通报, 1999, 18(1): 35-39. |
[10] | 张岩岩, 刘永鹤, 李东红, 等. 氮化铝粉末的制备及扩大实验研究[J]. 无机盐工业, 2020, 52(11): 56-59. |
[11] | 茅茜茜, 徐勇刚, 毛小建, 等. 碳热还原氮化法结合泡沫前驱体制备超细氮化铝粉体(英文) [J]. 无机材料学报, 2019, 34(10): 1123-1127. |
[12] | 江巍, 刘亚云. 利用机械力化学法合成氮化铝的初步研究[J]. 电瓷避雷器, 2005(6): 16-18. |
[13] | Hiranaka, A., Yi, X., Saito, G., et al. (2017) Effects of Al Parti-cle Size and Nitrogen Pressure on AlN Combustion Synthesis. Ceramics International, 43, 9872-9876. https://doi.org/10.1016/j.ceramint.2017.04.170 |
[14] | 金海波, 陈克新, 周和平, 等. 原位自反应合成AlN粉体[J]. 金属学报, 2000, 36(7): 775-779. |
[15] | 杨群, 王玉春, 李晓云, 等. 原位法制备AlN-TiN复相陶瓷性能的研究[J]. 真空电子技术, 2016(5): 26-29. |
[16] | Pavel, A.N., Artem, E.K., Nikolay, E.O., et al. (2019) Plasma Chemical Synthesis of Aluminum Nitride Nanopowder. Key Engineering Materials, 822, 628-633. https://doi.org/10.4028/www.scientific.net/KEM.822.628 |
[17] | 史月增, 王增华, 程红娟, 等. PVT法氮化铝晶体铝面、氮面生长对比分析[J]. 人工晶体学报, 2021, 50(12): 2240-2245. |
[18] | 裴笑竹, 赖宏伟, 张永亮, 等. 氮化铝纳米锥的低温生长与场发射性能(英文) [J]. 无机化学学报, 2014, 30(7): 1719-1724. |
[19] | Chaudhuri, M.G., Basu, J., Das, G.C., et al. (2013) A Novel Method of Synthesis of Nanostructured Aluminum Nitride through Sol-Gel Route by in Situ Generation of Nitrogen. Journal of the American Ceramic Society, 96, 385-390.
https://doi.org/10.1111/jace.12111 |
[20] | Watari, K., Valecillos, M.C., Brito, M.E., et al. (2010) Densification and Thermal Conductivity of AIN Doped with Y2O3, CaO, and Li2O. Journal of the American Ceramic Society, 79, 3103-3108.
https://doi.org/10.1111/j.1151-2916.1996.tb08083.x |
[21] | Tran, B.T., Maeda, N., Jo, M., et al. (2016) Performance Improvement of AlN Crystal Quality Grown on Patterned Si(111) Substrate for Deep UV-LED Applications. Scientific Reports, 6, Article No. 35681.
https://doi.org/10.1038/srep35681 |
[22] | 赵超亮, 宋波, 张幸红, 等. 氮化铝晶体生长技术的研究进展[J]. 材料导报, 2012, 26(9): 11-14+26. |
[23] | Frank, L., Stefan, K., Carsten, H., et al. (2016) Precipitates Originating from Tungsten Crucible Parts in AlN Bulk Crystals Grown by the PVT Method. Crystal Research and Technology, 51, 129-136.
https://doi.org/10.1002/crat.201500201 |
[24] | Fattahi, M., Vaferi, K., Vajdi, M., et al. (2020) Aluminum Nitride as an Alternative Ceramic for Fabrication of Microchannel Heat Exchangers: A Numerical Study. Ceramics International, 46, 11647-11657.
https://doi.org/10.1016/j.ceramint.2020.01.195 |
[25] | 郑瑞生, 武红磊. 氮化铝体单晶生长技术研究进展[J]. 深圳大学学报(理工版), 2010, 27(4): 433-439. |
[26] | Schowalter, L.J., Slack, G.A., Whitlock, J.B., et al. (2003) Fabrica-tion of Native, Single-Crystal AlN Substrates. Physica Status Solidi (C), No. 7, 1997-2000. https://doi.org/10.1002/pssc.200303462 |
[27] | 邱基华. 氮化铝陶瓷基板制备工艺的研究[J]. 电子世界, 2019(14): 59-60. |
[28] | Wang, H. and Wang, Y.M. (2012) Tribological Performance of AlN Nanopaeticles as Lubricat-ing Oil Additive. Advanced Material Research, 366, 238-242. https://doi.org/10.4028/www.scientific.net/AMR.366.238 |
[29] | 邰艳龙, 吴可量, 苗继斌, 等. 纳米AlN润滑材料的制备研究[J]. 润滑油, 2008, 23(4): 37-43. |