All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...
-  2018 

Optimization and Evaluation of a Vehicular Exhaust Heat Recovery System
Optimization and Evaluation of a Vehicular Exhaust Heat Recovery System

DOI: 10.15918/j.jbit1004-0579.17114

Keywords: diesel engine exhaust gas organic Rankine cycle(ORC) optimization
diesel engine exhaust gas organic Rankine cycle(ORC) optimization

Full-Text   Cite this paper   Add to My Lib

Abstract:

Exhaust waste heat recovery system based on organic Rankine cycle (ORC) has been considered as an effective method to achieve energy conservation and emissions reduction of engine. The performance of adiesel engine with an on-board ORC exhaust heat recovery system was evaluated through simulations in this study. The combined system was optimized through controlling the exhaust gas mass flow rate entering the ORC system. The models of the engine with ORC system were developed in GT-suite and Simulink environment. The validation results showed high accuracy of the models. The performance of the system recovering heat from different exhaust gas mass flow rates was evaluated. The comparative analysis of the performance between the optimized and un-optimized system was also presented. The results indicated that the exhaust gas mass flow rate had significant effects on the system performance. Integration with the on-board ORC system could effectively improve the engine power performance.The power output of the engine-ORC combined system with optimization had further improvement, and the maximum improvement could reach up to 1 16.kW.
Exhaust waste heat recovery system based on organic Rankine cycle (ORC) has been considered as an effective method to achieve energy conservation and emissions reduction of engine. The performance of adiesel engine with an on-board ORC exhaust heat recovery system was evaluated through simulations in this study. The combined system was optimized through controlling the exhaust gas mass flow rate entering the ORC system. The models of the engine with ORC system were developed in GT-suite and Simulink environment. The validation results showed high accuracy of the models. The performance of the system recovering heat from different exhaust gas mass flow rates was evaluated. The comparative analysis of the performance between the optimized and un-optimized system was also presented. The results indicated that the exhaust gas mass flow rate had significant effects on the system performance. Integration with the on-board ORC system could effectively improve the engine power performance.The power output of the engine-ORC combined system with optimization had further improvement, and the maximum improvement could reach up to 1 16.kW.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133