All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...
-  2018 

Recognition of Group Activities Using Complex Wavelet Domain Based Cayley-Klein Metric Learning
Recognition of Group Activities Using Complex Wavelet Domain Based Cayley-Klein Metric Learning

DOI: 10.15918/j.jbit1004-0579.17120

Keywords: video surveillance group activity recognition non-sampled dual-tree complex wavelet packet transform (NS-DTCWPT) Cayley-Klein metric learning
video surveillance group activity recognition non-sampled dual-tree complex wavelet packet transform (NS-DTCWPT) Cayley-Klein metric learning

Full-Text   Cite this paper   Add to My Lib

Abstract:

A group activity recognition algorithm is proposed to improve the recognition accuracy in video surveillance by using complex wavelet domain based Cayley-Klein metric learning. Non-sampled dual-tree complex wavelet packet transform (NS-DTCWPT) is used to decompose the human images in videos into multi-scale and multi-resolution. An improved local binary pattern (ILBP) and an inner-distance shape context (IDSC) combined with bag-of-words model is adopted to extract the decomposed high and low frequency coefficient features. The extracted coefficient features of the training samples are used to optimize Cayley-Klein metric matrix by solving a nonlinear optimization problem. The group activities in videos are recognized by using the method of feature extraction and Cayley-Klein metric learning. Experimental results on behave video set, group activity video set, and self-built video set show that the proposed algorithm has higher recognition accuracy than the existing algorithms.
A group activity recognition algorithm is proposed to improve the recognition accuracy in video surveillance by using complex wavelet domain based Cayley-Klein metric learning. Non-sampled dual-tree complex wavelet packet transform (NS-DTCWPT) is used to decompose the human images in videos into multi-scale and multi-resolution. An improved local binary pattern (ILBP) and an inner-distance shape context (IDSC) combined with bag-of-words model is adopted to extract the decomposed high and low frequency coefficient features. The extracted coefficient features of the training samples are used to optimize Cayley-Klein metric matrix by solving a nonlinear optimization problem. The group activities in videos are recognized by using the method of feature extraction and Cayley-Klein metric learning. Experimental results on behave video set, group activity video set, and self-built video set show that the proposed algorithm has higher recognition accuracy than the existing algorithms.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133