All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

High Order Tensor Forms of Growth Curve Models

DOI: 10.4236/alamt.2018.81003, PP. 18-32

Keywords: Tensor, Generalized Linear Model, Growth Curve Model, Parameter Estimation, Generalized Inverse

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we first study the linear regression model \"\" and obtain a norm-minimized estimator of the parameter vector \"\" by using the g-inverse and the singular value decomposition of matrix X. We then investigate the growth curve model (GCM) and extend the GCM to a generalized GCM (GGCM) by using high order tensors. The parameter estimations in GGCMs are also achieved in this way.

References

[1]  Bilodeau, M. and Brenner, D. (1961) Theory of Multivariate Statistics. Springer, New York.
[2]  Bollen, K.A. and Curran, P.J. (2006) Latent Curve Models: A Structure Equation Perspective. Wiley, Hoboken.
[3]  Bryk, A.S. and Raudenbush, S.W. (1987) Application of Hierarchical Linear Models to Assessing Change. Psychological Bulletin, 101, 147-158.
https://doi.org/10.1037/0033-2909.101.1.147
[4]  Kollo, T. and Rosen, D. (2005) Advanced Multivariate Statistics with Matrices. Springer, New York.
https://doi.org/10.1007/1-4020-3419-9
[5]  Raudenbush, S.W. and Bryk, A.S. (2002) Hierarchical Linear Models: Applications and Data Analysis Methods 2. Sage Publications, Thousand Oaks, CA.
[6]  Bauer, D.J. (2007) Observations on the Use of Growth Mixture Models in Psychological Research. Multivariate Behavioral Research, 42, 757-786.
https://doi.org/10.1080/00273170701710338
[7]  Bollen, K.A. and Curran, P.J. (2004) Autoregressive Latent Trajectory (ALT) Models: A Synthesis of Two Traditions. Sociological Methods and Research, 32, 336-383.
https://doi.org/10.1177/0049124103260222
[8]  Coffman, D.L. and Millsap, R.E. (2006) Evaluating Latent Growth Curve Models Using Individual Fit Statistics. Structural Equation Modeling, 13, 1-27.
https://doi.org/10.1207/s15328007sem1301_1
[9]  Hedeker, D. and Gibbons, R. (2006) Longitudinal Data Analysis. Wiley Inc., New York.
[10]  Little, R.J. and Rubin, D.B. (1987) Statistical Analysis with Missing Data. Wiley Inc., New York.
[11]  Singer, J.D. (1998) Using SAS Proc Mixed to Fit Multilevel Models, Hierarchical Models, and Individual Growth Models. Journal of Educational and Behavioral Statistics, 23, 323-355.
https://doi.org/10.3102/10769986023004323
[12]  Singer, J.D. and Willett, J.B. (2003) Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence. Oxford University Press, New York.
https://doi.org/10.1093/acprof:oso/9780195152968.001.0001
[13]  Hastie, T., Tibshirani, R. and Friedman, J. (2009) The Elements of Statistical Learning. 2nd Edition, Springer, New York.
https://doi.org/10.1007/978-0-387-84858-7
[14]  Bollen, K.A. (2007) On the Origins of Latent Curve Models. In: Cudeck, R. and MacCallum, R., Eds., Factor Analysis, at 100, Lawrence Erlbaum Associates, Mahwah, NJ, 79-98.
[15]  Comon, P., Golub, G., Lim, L.-H. and Mourrain, B. (2008) Symmetric Tensors and Symmetric Tensor Rank. SIAM Journal on Matrix Analysis and Applications, 30, 1254-1279.
https://doi.org/10.1137/060661569
[16]  Wishart, J. (1938) Growth Rate Determinations in Nutrition Studies with the Bacon Pig and Their Analysis. Biometrika, 30, 16-28.
https://doi.org/10.1093/biomet/30.1-2.16
[17]  McArdle, J.J. (2009) Latent Variable Modeling of Differences and Changes with Longitudinal Dynamic Structural Analysis. Annual Review of Psychology, 60, 577-605.
https://doi.org/10.1146/annurev.psych.60.110707.163612
[18]  Kolda, T.G. and Bader, B.W. (2009) Tensor Decompositions and Applications. SIAM Review, 51, 455-500.
https://doi.org/10.1137/07070111X

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133