All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

半晶聚乙烯局部和整体分子链运动的固体核磁共振研究Hot!

DOI: 10.11938/cjmr20150206, PP. 208-227

Keywords: 聚乙烯,链段运动,分子链扩散,固体核磁共振

Full-Text   Cite this paper   Add to My Lib

Abstract:

固体核磁共振技术是研究半晶聚合物的局部和整体分子链运动的一种非常独特的手段.该文对近年来半晶聚乙烯分子链运动的固体核磁共振研究工作进行了综述,展示了如何应用先进的固体核磁共振技术获得半晶聚乙烯局部和长程分子链运动的详细信息.这些分子层次上的信息对加深聚乙烯宏观机械性质的理解具有非常重要的意义.

References

[1]  Sperling L H. Introduction to Physical Polymer Science (4th ed)[M]. New York: John Wiley & Sons, 1992.
[2]  Stehling F C, Mandelkern L. The glass temperature of linear polyethylene[J]. Macromolecules, 1970, 3(2): 242-252.
[3]  McBrierty V J, McDonald I R. Nuclear magnetic relaxation in linear and branched polyethylene[J]. Polymer, 1975, 16(2): 125-133.
[4]  Strobl G. The Physics of Polymers (2nd ed)[M]. Berlin: Springer-Verlag, 1997.
[5]  Liu S F, Mao J D, Schmidt-Rohr K. A robust technique for two-dimensional separation of undistorted chemical-shift anisotropy powder patterns in magic-angle-spinning NMR[J]. J Magn Reson, 2002, 155(1): 15-28.
[6]  Axelson D E, Mandelkern L, Popli R, et al. 13C NMR of polyethylenes: Correlation of the crystalline component T1 with structure[J]. J Polym Sci Pol Phys, 1983, 21(11): 2 319-2 335.
[7]  Hu W G, Schmidt-Rohr K. Polymer ultradrawability: the crucial role of α-relaxation chain mobility in the crystallites[J]. Acta Polym, 1999, 50(8): 271-285.
[8]  Boyd R H. Relaxation processes in crystalline polymers: molecular interpretation — a review[J]. Polymer, 1985, 26(8): 1 123-1 133.
[9]  Boyd R H. Relaxation processes in crystalline polymers: experimental behaviour — a review[J]. Polymer, 1985, 26(3): 323-347.
[10]  Mansfield M, Boyd R H. Molecular motions, therelaxation, and chain transport in polyethylene crystals[J]. J Polym Sci Pol Phys, 1978, 16(7): 1 227-1 252.
[11]  Ward I M, Hadley D W. An introduction to the Mechanical Properties of Solid Polymers (2nd ed)[M]. London: John Wiley & Sons, 1993.
[12]  Long Y, Shanks R A, Stachurski Z H. Kinetics of polymer crystallisation[J]. Prog Polym Sci, 1995, 20(4): 651-701.
[13]  Lu J, Mirau P A, Tonelli A E. Chain conformations and dynamics of crystalline polymers as observed in their inclusion compounds by solid-state NMR[J]. Prog Polym Sci, 2002, 27(2): 357-401.
[14]  Spiess H W. Deuteron NMR — a new tool for studying chain mobility and orientation in polymers[J]. Adv Polym Sci, 1985, 66: 23-58.
[15]  Spiess H W. Structure and dynamics of solid polymers from 2D and 3D NMR[J]. Chem Rew, 1991, 91(7): 1 321-1 338.
[16]  Schmidt-Rohr K, Spiess H W. Multidimensional Solid-State NMR and Polymers[M]. London: Academic Press, 1994.
[17]  Spiess H W. Interplay of structure and dynamics in macromolecular and supramolecular systems[J]. Macromolecules, 2010, 43(13): 5 479-5 491.
[18]  Levitt M H. Spin Dynamics: Basics of Nuclear Magnetic Resonance[M]. New York: John Wiley & Sons, 2001.
[19]  Hansen M R, Graf R, Spiess H W. Solid-state NMR in macromolecular systems: insights on how molecular entities move[J]. Acc Chem Res, 2013, 46 (9): 1 996-2 007.
[20]  Flory P. Principle of Polymer Chemistry[M]. New York: Cornell University Press, 1953.
[21]  Mandelkern L. Crystallization in Polymers[M]. New York: McGraw-Hill, 1964.
[22]  Mandelkern L. An Introduction to Macromolecules[M]. New York: Springer-Verlag, 1983.
[23]  Robertson R E. Polymer Order and Polymer Density[J]. J Phys Chem, 1965, 69(5): 1 575-1 578.
[24]  Schnell I, Spiess H W. High-resolution 1H NMR spectroscopy in the solid state: very fast sample rotation and multiplequantum coherences[J]. J Magn Reson, 2001, 151(2): 153-227.
[25]  Brown S P, Spiess H W. Advanced solid-state NMR methods for the elucidation of structure and dynamics of molecular, macromolecular, and supramolecular systems[J]. Chem Rev, 2001, 101(12): 4 125-4 156.
[26]  Baker A M E, Windle A H. Evidence for a partially ordered component in polyethylene from wide-angle X-ray diffraction[J]. Polymer, 2001, 42(2): 667-680.
[27]  Rastogi S, Terry A E. Morphological implications of the interphase bridging crystalline and amorphousregions in semi-crystalline polymers[J]. Adv Polym Sci, 2005, 180: 161-194.
[28]  Balijepalli S, Rutledge G C. Molecular simulation of the intercrystalline phase of chain molecules[J]. J Chem Phys, 1998, 109(16): 6 523-6 526.
[29]  Flory P J, Yoon D Y, Dill K A. The interphase in lamellar semicrystalline polymers[J]. Macromolecules, 1984, 17(4): 862-868.
[30]  Gautam S, Balijepalli S, Rutledge G C. Molecular simulations of the interlamellar phase in polymers: effect of chain tilt[J]. Macromolecules, 2000, 33(24): 9 136-9 145.
[31]  Axelson D E, Russell K E. Characterization of polymers by means of 13C NMR spectroscopy: (a) Morphology by solid-state NMR (b) End-group studies[J]. Prog Polym Sci, 1985, 11(3): 221-282.
[32]  Kitamaru R, Horii F, Hyon S H. Proton magnetic resonance studies of the phase structure of bulk-crystallized linear polyethylene[J]. J Polym Sci Pol Phys, 1977, 15(5): 821-836.
[33]  Mandelkern L, Alamo R G, Kennedy M A. The interphase thickness of linear polyethylene[J]. Macromolecules, 1990, 23(21): 4 721-4 723.
[34]  Mowery D M, Harris D J, Schmidt-Rohr K. Characterization of a major fraction of disordered all-trans chains in cold-drawn high-density polyethylene by solid-state NMR[J]. Macromolecules, 2006, 39(8): 2 856-2 865.
[35]  Uehara H, Yamanobe T, Komoto T. Relationship between solid-state molecular motion and morphology for ultrahigh molecular weight polyethylene crystallized under different conditions[J]. Macromolecules, 2000, 33(13): 4 861-4 870.
[36]  Organ S J, Keller A. Solution crystallization of polyethylene at high temperatures[J]. J Mater Sci, 1985, 20(5): 1 571-1 585.
[37]  Flory P J. On the morphology of the crystalline state in polymers[J]. J Am Chem Soc, 1962, 84(15): 2 857-2 867.
[38]  Billmeyer F W. Textbook of Polymer Science (3rd ed)[M]. New York: Wiley, 1984.
[39]  Earl W L, Vanderhart D L. Observations in solid polyethylenes by Carbon-13 nuclear magnetic resonance with magic angle sample spinning[J]. Macromolecules, 1979, 12: 762-767.
[40]  Vanderhart D L. Influence of molecular packing on solid-state 13C chemical shifts: the n-alkanes[J]. J Magn Reson, 1981, 44(1): 117-125.
[41]  Perez E, Vanderhart D L. Morphological partitioning of chain ends and methyl branches in melt-crystallized polyethylene by 13C NMR[J]. J Polym Sci Pol Phys, 1987, 25(8): 1 637-1 653.
[42]  Yao Y F. Influence of spatial constraints in non-crystalline regions on the polymer dynamics in semi-crystalline polyethylene: a solid state NMR study[D]. German: Johannes Gutenberg-Universitaet Mainz, 2007.
[43]  (a) Yao Y F, Graf R, Spiess H W, et al. Morphological differences in semicrystalline polymers: Implications for local dynamics and chain diffusion[J]. Phys Rev E, 2007, 76(6): 060801-060804; (b) Yao Y F, Graf R, Spiess H W, et al. Restricted segmental mobility can facilitate medium-range chain diffusion: A NMR study of morphological influence on chain dynamics of polyethylene[J]. Macromolecules, 2008, 41(7): 2 514-2 519.
[44]  Spiess H W. Molecular dynamics of solid polymers as revealed by deuteron NMR[J]. Colloid Polym Sci, 1983, 261(3): 193-209.
[45]  Yao Y F, Rastogi S, Xue H J, et al. Segmental mobility in the noncrystalline regions of nascent polyethylene synthesized using two different catalytic systems with implications on solid-state deformation[J]. Polymer, 2013, 54(1): 411-422.
[46]  Yao Y, Jiang S, Rastogi S. 13C solid-state NMR characterization of structure and orientation development in the narrow and broad molar mass disentangled UHMWPE[J]. Macromolecules, 2014, 47(4): 1 371-1 382.
[47]  VanderHart D L. Characterization of the methylene 13C chemical shift tensor in the normal alkane n-C20H42[J]. J Chem Phys, 1976, 64(2): 830-834.
[48]  Schnell I. Dipolar recoupling in fast-MAS solid-state NMR spectroscopy[J]. Prog Nucl Mag Res Spectrosc, 2004, 45(1-2): 145-207.
[49]  Saalwachter K, Schnell I. REDOR-based heteronuclear dipolar correlation experiments in multi-spin systems: rotor-encoding, directing, and multiple distance and angle determination[J]. Solid State Nucl Magn Reson, 2002, 22(2-3): 154-187.
[50]  Davis G T, Eby R K. Glass transition of polyethylene: Volume relaxation[J]. J Appl Phys, 1973, 44(10): 4 274-4 281.
[51]  Cho T Y, Shin E J, Jeong W, et al. Effects of comonomers on lamellar and noncrystalline microstructure of ethylene copolymers[J]. Macromol Rapid Commun, 2006, 27(5): 322-327.
[52]  Demus D, Goodby J W, Gray G W, et al. Handbook of Liquid Crystals[M]. New York: Wiley-VCH, 1998.
[53]  Hu W G, Boeffel C, Schmidt-Rohr K. Chain flips in polyethylene crystallites and fibers characterized by dipolar 13C NMR[J]. Macromolecules, 1999, 32(5): 1 611-1 619.
[54]  Schnell I, Watts A, Spiess H W. Double-quantum double-quantum MAS exchange NMR spectroscopy: dipolar-coupled spin pairs as probes for slow molecular dynamics[J]. J Magn Reson, 2001, 149(1): 90-102.
[55]  Schmidt-Rohr K, Spiess H W. Chain diffusion between crystalline and amorphous regions in polyethylene detected by 2D exchange carbon-13 NMR[J]. Macromolecules, 1991, 24(19): 5 288-5 293.
[56]  Yao Y F, Graf R, Spiess H W, et al. Influence of crystal thickness and topological constraints on chain diffusion in linear polyethylene[J]. Macromol Rapid Commun, 2009, 30(13): 1 123-1 127.
[57]  Torchia D A. The measurement of proton-enhanced carbon-13 T1 values by a method which suppresses artifacts[J]. J Magn Reson, 1978, 30(3): 613-616.
[58]  Doi M, Edwards S F. The Theory of Polymer Dynamics[M]. Oxford: Oxford University Press, 1986.
[59]  Wei Y, Graf R, Sworen J C, et al. Local and Collective motions in precise polyolefins with alkyl branches: a combination of 2H and 13C solid-state NMR spectroscopy[J]. Angew Chem Int Edit, 2009, 48(25): 4 617-4 620.
[60]  Lieser G, Wegner G, Smith J A, et al. Morphology and packing behavior of model ethylene/propylene copolymers with
[61]  precise methyl branch placement[J]. Colloid Polym Sci, 2004, 282(8): 773-381.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133