All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...
冰川冻土  2015 

黑河上游高寒山区集水面积阈值确定方法探讨

DOI: 10.7522/j.issn.1000-0240.2015.0056, PP. 493-499

Keywords: 黑河上游,高寒山区,阈值,河网,阈值关系曲线法,适度指数法

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对我国高寒山区河流的最佳集水面积阈值确定的问题,选取黑河上游山区为研究区,利用SWAT(soilandwaterassessmenttool)模型的流域离散模块(watersheddelineator)基于DEM提取河网,探讨河网总长度与集水面积阈值关系曲线法和适度指数法在高寒山区的适用性.结果表明两种方法所对应的最佳集水面积阈值相差较大,所提取的河网难以反映河流真实情况,效果较差,主要原因是上述方法仅考虑流域面积、地形和几何特征的影响,缺乏对降水和其他下垫面因子的综合考虑.相较而言,利用蓝线河网推求最佳集水面积的适度指数法的效果较好.在高寒山区进行河网提取时,应综合考虑影响河网发育的各个因素,在流域分区的基础上,通过不同集水面积阈值实验,获取更高精度的数字河网,改善分布式水文模型的空间离散效果.

References

[1]  Wang Panxing, Lu Chuhan, Guan Zhaoyong, et al. Definition and calculation of three circulation indices for closed pressure systems[J]. Journal of Nanjing Institute of Meteorology, 2007, 30(6): 730-735.[王盘兴, 卢楚翰, 管兆勇, 等. 闭合气压系统环流指数的定义及计算[J]. 南京气象学院学报, 2007, 30(6): 730-735.]
[2]  Bai Huzhi, Xie Jinnan, Li Dongliang, et al. The principal feature of Qinghai-Xizang Plateau monsoon variation in 40 years[J]. Plateau Meteorology, 2001, 20(1): 22-27.[白虎志, 谢金南, 李栋梁. 近40年青藏高原季风变化的主要特征[J]. 高原气象, 2001, 20(1): 22-27.]
[3]  Yin Zhenliang, Xiao Honglang, Zou Songbing, et al. Progress of the research on hydrological simulation in the mainstream of the Heihe River, Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2013, 35 (2): 438-446. [尹振良, 肖洪浪, 邹松兵, 等. 祁连山黑河干流山区水文模拟研究进展[J]. 冰川冻土, 2013, 35(2): 438-446.]
[4]  Xu Shuying, Gao Youxi. The monsoon phenomenon in Tibetan Plateau[J]. Acta Geographica Sinica, 1962, 28(2): 111-123.[徐淑英, 高由禧. 西藏高原的季风现象[J]. 地理学报, 1962, 28(2): 111-123.]
[5]  Lu Zhixiang. Study on the distribution of temperature and precipitation and the simulating of runoff in mountainous region of Heihe mainstream river[D]. Beijing: University of Chinese Academy of Sciences, 2012. [陆志翔. 黑河干流山区气温降水分布特征及径流模拟研究[D]. 北京: 中国科学院大学, 2012.]
[6]  Li Ren, Zhao Lin, Ding Yongjian, et al. The climate characteristics of the maximun seasonal frozen depth in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2009, 31(6): 1050-1056.[李韧, 赵林, 丁永建, 等. 青藏高原季节性冻土的气候学特征[J]. 冰川冻土, 2009, 31(6): 1050-1056.]
[7]  Sun Jia, Jiang Hao, Wang Keli, et al. The fine spatial distribution of mean precipitation and the estimation of total precipitation in Heihe River basin[J]. Journal of Glaciology and Geocryology, 2011, 33(2): 318-324. [孙佳, 江灏, 王可丽, 等. 黑河流域气候平均降水的精细化分布及总量计算[J]. 冰川冻土, 2011, 33(2): 318-324.]
[8]  Tang M, Reiter E R. Plateau monsoons of the Northern Hemisphere: A comparison between North America and Tibet[J]. Monthly Weather Review, 1984, 112(4): 617-637.
[9]  An Meiling, Zhang Bo, Sun Liwei, et al. Quantitative analysis of dynamic change of land use and its influencing factors in upper reaches of the Heihe River[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 355-363. [安美玲, 张勃, 孙立炜, 等. 黑河上游土地利用动态变化及影响因素的定量分析[J]. 冰川冻土, 2013, 35(2): 355-363.]
[10]  Inoue T, Matsumoto J. A comparison of summer sea level pressure over East Eurasia between NCEP-NCAR reanalysis and ERA-40 for the period 1960-99[J]. Journal of the Meteorological Society of Japan, 2004, 82(3): 951-958.
[11]  Yan Lili, Wang Jian. Study of extracting glacier information from remote sensing[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 110-118. [彦立利, 王建. 基于遥感的冰川信息提取方法研究进展[J]. 冰川冻土, 2013, 35(1): 110-118.]
[12]  Renfrew I A, Moore G, Guest P S, et al. A comparison of surface layer and surface turbulent flux observations over the Labrador Sea with ECMWF analyses and NCEP reanalyses[J]. Journal of Physical Oceanography, 2002, 32(2): 383-400.
[13]  Lan Yongchao, Liu Jinpeng, Ding Hongwei, et al. Changes of precipitation in mountainous areas of the three large inland river basins in the Hexi Corridor and their regional differences during 1960-2012[J]. Journal of Glaciology and Geocryology, 2013, 35(6): 1474-1480. [蓝永超, 刘金鹏, 丁宏伟, 等. 1960-2012年河西内陆河上游山区降水量变化及其区域性差异分析[J]. 冰川冻土, 2013, 35(6): 1474-1480.]
[14]  Uppala S M, Kllberg P W, Simmons A J, et al. The ERA-40 re-analysis[J]. Quarterly Journal of the Royal Meteorological Society, 2005, 131: 2961-3012.
[15]  Bie Qiang, Qiang Wenli, Wang Chao, et al. Monitoring the glacier variation in the upper reaches of the Heihe River based on remote sensing in 1960-2010[J]. Journal of Glaciology and Geocryology, 2013, 35(3): 574-582. [别强, 强文丽, 王超, 等. 1960-2010年黑河流域冰川变化的遥感监测[J]. 冰川冻土, 2013, 35(3): 574-582.]
[16]  Zheng Du, Yao Tandong. Uplifting of Tibetan Plateau with its environmental effects[J]. Advances in Earth Science, 2006, 21(5): 451-457.[郑度, 姚檀栋. 青藏高原隆升及其环境效应[J]. 地球科学进展, 2006, 21(5): 451-457.]
[17]  Yang Bang, Ren Liliang. Identification and comparison of critical support area in extracting drainage network from DEM[J]. Water Resources and Power, 2009, 27(5): 11-15. [杨邦, 任立良. 集水面积阈值确定方法的比较研究[J]. 水电能源科学, 2009, 27(5): 11-15.]
[18]  Zhu Chunling, Ma Yaoming, Chen Xuelong. Atmospheric boundary layer structure in the west and the southeastern periphery of the Tibetan Plateau during the pre-monsoon period[J]. Journal of Glaciology and Geocryology, 2011, 33(2): 325-333.[朱春玲, 马耀明, 陈学龙. 青藏高原西部及东南周边地区季风前大气边界层结构分析[J]. 冰川冻土, 2011, 33(2): 325-333.]
[19]  Kong Fanzhe, Li Lili. Determination of river drainage area thre-shold for extraction of drainage network by DEM[J]. Water Resources and Power, 2005, 23(4): 65-68. [孔凡哲, 李莉莉. 利用DEM提取河网时集水面积阈值的确定[J]. 水电能源科学, 2005, 23(4): 65-68.]
[20]  Sun Aili, Yu Zhongbo, Yang Chuanguo, et al. Impact factors of contribution area threshold in extracting drainage network for rivers in China[J]. Journal of Hydraulic Engineering, 2013, 44(8): 901-908. [孙爱立, 余钟波, 杨传国, 等. 我国水系提取阈值影响因素分析[J]. 水利学报, 2013, 44(8): 901-908.]
[21]  Ye Duzheng, Gao Youxi. Qinghai-Xizang Plateau meteorology[M]. Beijing: Science Press, 1979.[叶笃正, 高由禧. 青藏高原气象学[M]. 北京: 科学出版社, 1979.]
[22]  Wu Taibing, Xia Dazhong, Zhang Xingnan. Identification of critical contributing area based on improved fitness index method[J]. Water Resources and Power, 2011, 29(4): 18-20. [吴泰兵, 夏达忠, 张行南. 基于改进适度指数法的流域流水网阈值确定研究[J]. 水电能源科学, 2011, 29(4) : 18-20.]
[23]  Qian Zheng'an, Wu Tongwen. Feature of mean vertical circulation over the Qinghai-Xizang Plateau and its neighborhood[J]. Chinese Journal of Atmospheric Sciences, 2001, 25(4): 444-454.[钱正安, 吴统文. 青藏高原及周围地区的平均垂直环流特征[J]. 大气科学, 2001, 25(4): 444-454.]
[24]  Lin Wentzu, Chou Wenchieh, Lin Chaoyuan, et al. Automated suitable drainage network extraction fromdigital elevation models in Taiwan's upstream watersheds[J]. Hydrological Processes, 2006, 20(2): 289-306.
[25]  Xun Xueyi, Hu Zeyong, Sun Jun, et al. A comparative analysis of height field variations over the Tibetan Plateau using ECMWF and NCEP reanalysis data[J]. Journal of Glaciology and Geocryology, 2011, 33(1): 80-87.[荀学义, 胡泽勇, 孙俊, 等. ECMWF和NCEP再分析资料在青藏高原高度场变化中的对比分析[J]. 冰川冻土, 2011, 33(1): 80-87.]
[26]  Chen Rensheng, Kang Ersi, Ding Yongjian. Some knowledge on and parameters of China's alpine hydrology[J]. Advances in Water Science, 2014, 25(3): 307-317. [陈仁升, 康尔泗, 丁永健. 中国高寒区水文学中的一些认识和参数[J]. 水科学进展, 2014, 25(3): 307-317.]
[27]  Wang Tongmei, Wu Guoxiong, Wan Rijin. Influence of the mechanical and thermal forcing of Tibetan Plateau on the circulation of the Asian summer monsoon area[J]. Plateau Meteorology, 2008, 27(1): 1-9.[王同美, 吴国雄, 万日金. 青藏高原的热力和动力作用对亚洲季风区环流的影响[J]. 高原气象, 2008, 27(1): 1-9.]
[28]  Ning Jicai, Liu Gaohuan, Liu Qingsheng, et al. Spatial discretization of hydrological response units and improved SWAT model[J]. Advances in Water Science, 2012, 23(1): 14-20. [宁吉才, 刘高焕, 刘庆生, 等. 水文响应单元空间离散化及SWAT模型改进[J]. 水科学进展, 2012, 23(1): 14-20.]
[29]  Zhou Xiuji, Zhao Ping, Chen Junming, et al. Impacts of thermodynamic processes over the Tibetan Plateau on the northern hemispheric climate[J]. Science in China (Series D: Earth Sciences), 2009, 52(11): 1679-1693.[周秀骥, 赵平, 陈军明, 等. 青藏高原热力作用对北半球气候影响的研究[J]. 中国科学(D辑: 地球科学), 2009, 39(11): 1473-1486.]
[30]  Zhang Xuesong, Hao Fanghua, Cheng Hongguang, et al. Influence of subdivision of watershed on distributed hydrological model[J].Journal of Hydraulic Engineering, 2004, 35(7): 119-123. [张雪松, 郝芳华, 程红光, 等. 亚流域划分对分布式水文模型模拟结果的影响[J]. 水利学报, 2004, 35(7): 119-123.]
[31]  Wu Guoxiong, Zhang Yongsheng. Thermal and mechanical forcing of the Tibetan Plateau and Asian monsoon onset. Part II: timing of the onset[J]. Chinese Journal of Atmospheric Sciences, 1999, 23(1): 51-61.[吴国雄, 张永生. 青藏高原的热力和机械强迫作用以及亚洲季风的爆发[J]. 大气科学, 1999, 23(1): 51-61.]
[32]  Ye Aizhong, Xia Jun, Wang Gangsheng, et al. Drainage network extraction and subcatchment delineation based on digital elevation model[J]. Journal of Hydraulic Engineering, 2005, 36(5): 531-537. [叶爱中, 夏军, 王纲胜, 等. 基于数字高程模型的河网提取及子流域生成[J]. 水利学报, 2005, 36(5): 531-537.]
[33]  Mao Jiangyu, Wu Guoxiong. Impacts of anomalies of thermal state over the Qinghai-Xizang Plateau and sea surface temperature on interannual variability of the Asian monsoon seasonal transition[J]. Chinese Journal of Geophysics, 2006, 49(5): 1279-1287.[毛江玉, 吴国雄. 青藏高原热状况和海温异常对亚洲季风季节转换年际变化的影响[J]. 地球物理学报, 2006, 49(5): 1279-1287.]
[34]  Liu Yuting, Zhang Xingnan, Liu Bojuan. Research on the relationship between optimal drainage area threshold and river network density by terrain classification[J]. Journal of Yangzi River Scientific Research Institute, 2014, 31(4): 17-20. [刘羽婷, 张行南, 刘伯娟. 基于地形带分类的最佳阈值与河网密度关系研究[J]. 长江科学院院报, 2014, 31(4): 17-20.]
[35]  Shi Yafeng, Tang Maocang, Ma Yuzhen. Linkage between the second uplifting of the Qinghai-Xizang (Tibetan) Plateau and the initiation of the Asian monsoon system[J]. Science in China (Series D: Earth Sciences), 1999, 42(3): 303-312.[施雅风, 汤懋苍, 马玉贞. 青藏高原二期隆升与亚洲季风孕育关系探讨[J]. 中国科学(D辑: 地球科学), 1998, 28(3): 263-271.]
[36]  Yang Jinling. Digital determination of catchment area threshold based on fractal dimension[J]. Science of Surveying and Mapping, 2011, 36(4): 33-34. [杨锦玲. 基于分形的数字水系集水面积阈值确定研究[J]. 测绘科学, 2011, 36(4): 33-34.]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133