The Amazon is an area covered predominantly by dense tropical rainforest with relatively small inclusions of several other types of vegetation. In the last decades, scientific research has suggested a strong link between the health of the Amazon and the integrity of the global climate: tropical forests and woodlands (e.g., savannas) exchange vast amounts of water and energy with the atmosphere and are thought to be important in controlling local and regional climates. Consider the importance of the Amazon biome to the global climate changes impacts and the role of the protected area in the conservation of biodiversity and state-of-art of downscaling model techniques based on ANN Calibrate and run a downscaling model technique based on the Artificial Neural Network (ANN) that is applied to the Amazon region in order to obtain regional and local climate predicted data (e.g., precipitation). Considering the importance of the Amazon biome to the global climate changes impacts and the state-of-art of downscaling techniques for climate models, the shower of this work is presented as follows: the use of ANNs good similarity with the observation in the cities of Belém and Manaus, with correlations of approximately 88.9% and 91.3%, respectively, and spatial distribution, especially in the correction process, representing a good fit. 1. Introduction The Amazon is an area covered predominantly by dense tropical rainforest with relatively small inclusions of several other types of vegetation (e.g., Bromeliad, Heliconia, Orchids, water lily, and others). In the last decades, scientific research has suggested a strong link between the health of the Amazon and the integrity of the global climate: tropical forests and woodlands (e.g., Cerrado) exchange vast amounts of water and energy with the atmosphere and are thought to be important in controlling local and regional climates [1]. The same authors showed that the assessment of future cerrado land use scenarios is also necessary to understand the future climate and ecosystem health of the Amazon. The Amazon Biome is an area covered predominantly by dense tropical rainforest with relatively small inclusions of several other types of vegetation. It encompasses 6.7 million km2 (twice the size of India) and is shared by eight countries (Brazil, Bolivia, Peru, Ecuador, Colombia, Venezuela, Guyana, and Suriname), as well as the overseas territory of French Guiana. The Amazon Biome houses at least 11% of the world’s known biodiversity, including endemic and endangered flora and fauna, and its river accounts for 15-16% of the
References
[1]
M. H. Costa and G. F. Pires, “Effects of Amazon and Central Brazil deforestation scenarios on the duration of the dry season in the arc of deforestation,” International Journal of Climatology, vol. 30, no. 13, pp. 1970–1979, 2010.
[2]
J. Marengo, C. A. Nobre, R. A. Betts, P. M. Cox, G. Sampaio, and L. Salazar, “Global warming and climate change in Amazonia: climate-vegetation feedback and impacts on water resources,” in Amazonia and Global Change, M. Keller, M. Bustamante, J. Gash, et al., Eds., vol. 186 of Geophysical Monograph Series, pp. 273–292, AGU, Washington, DC, USA, 2009.
[3]
S. Baidya Roy and R. Avissar, “Impact of land use/land cover change on regional hydrometeorology in Amazonia,” Journal of Geophysical Research D, vol. 107, no. 20, pp. 4–12, 2002.
[4]
A. W. Gandu, J. C. P. Cohen, and J. R. S. de Souza, “Simulation of deforestation in eastern Amazonia using a high-resolution model,” Theoretical and Applied Climatology, vol. 78, no. 1–3, pp. 123–135, 2004.
[5]
R. Avissar, P. L. Silva Dias, M. A. Silva Dias, and C. A. Nobre, “The Large Scale Biosphere Atmosphere Experiment in Amazonia (LBA). Insights and future research needs,” Journal of Geophysical Research, vol. 107, no. 20, pp. 1–6, 2002.
[6]
M. D. Oyama and C. A. Nobre, “A new climate-vegetation equilibrium state for Tropical South America,” Geophysical Research Letters, vol. 30, no. 23, p. 2199, 2003.
[7]
R. R. da Silva, D. Werth, and R. Avissar, “Regional impacts of future land-cover changes on the Amazon basin wet-season climate,” Journal of Climate, vol. 21, no. 6, pp. 1153–1170, 2008.
[8]
R. Victoria, L. Matinelli, J. Moraes et al., “Surface air temperature variations in the Amazon region and its border during this century,” Journal of Climate, vol. 11, pp. 1105–1110, 1998.
[9]
J. A. Marengo, C. A. Nobre, J. Tomasella, M. F. Cardoso, and M. D. Oyama, “Hydro-climatic and ecological behaviour of the drought of Amazonia in 2005,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 363, no. 1498, pp. 1773–1778, 2008.
[10]
J. A. Marengo, C. A. Nobre, J. Tomasella et al., “The drought of Amazonia in 2005,” Journal of Climate, vol. 21, no. 3, pp. 495–516, 2008.
[11]
M. R. Haylock, G. C. Cawley, C. Harpham, R. L. Wilby, and C. M. Goodess, “Downscaling heavy precipitation over the United Kingdom: a comparison of dynamical and statistical methods and their future scenarios,” International Journal of Climatology, vol. 26, no. 10, pp. 1397–1415, 2006.
[12]
J. A. Marengo, W. R. Soares, C. Saulo, and M. Nicolini, “Climatology of the low-level jet east of the Andes as derived from the NCEP-NCAR reanalyses: characteristics and temporal variability,” Journal of Climate, vol. 17, pp. 2261–2280, 2004.
[13]
H. Matsuyama, J. A. Marengo, G. O. Obregon, and C. A. Nobre, “Spatial and temporal variabilities of rainfall in tropical South America as derived from climate prediction Center merged analysis of precipitation,” International Journal of Climatology, vol. 22, no. 2, pp. 175–195, 2002.
[14]
J. A. Marengo, “Interdecadal variability and trends of rainfall across the Amazon basin,” Theoretical and Applied Climatology, vol. 78, no. 1-3, pp. 79–96, 2004.
[15]
M. Valverde and J. A. Marengo, “Mudan?as na Circula??o Atmosférica sobre a América do Sul para cenários futuros de clima projetados pelos modelos globais do IPCC AR4,” Revista Brasileira de Meteorologia, vol. 25, pp. 125–145, 2010.
[16]
P. M. Cox, P. P. Harris, C. Huntingford et al., “Increasing risk of Amazonian drought due to decreasing aerosol pollution,” Nature, vol. 453, no. 7192, pp. 212–215, 2008.
[17]
D. Mendes and J. A. Marengo, “Temporal downscaling: a comparison between artificial neural network and autocorrelation techniques over the Amazon Basin in present and future climate change scenarios,” Theoretical and Applied Climatology, vol. 100, no. 3, pp. 413–421, 2010.
[18]
P. Nobre, M. Malagutti, D. F. Urbano, R. A. F. de Almeida, and E. Giarolla, “Amazon deforestation and climate change in a coupled model simulation,” Journal of Climate, vol. 22, no. 21, pp. 5686–5697, 2009.
[19]
J. C. Espinoza, J. Ronchail, M. Lengaigne et al., “Revisiting wintertime cold air intrusions at the east of the Andes: propagating features from subtropical Argentina to Peruvian Amazon and relationship with large-scale circulation patterns,” Climate Dynamics, vol. 41, no. 7-8, pp. 1983–2002, 2012.
[20]
J. P. Boulanger, F. Martinez, and E. C. Segura, “Projection of future climate change conditions using IPCC simulations, neural networks and bayesian statistics—part 1: temperature mean state and seasonal cycle in South America,” Climate Dynamics, vol. 27, no. 2-3, pp. 233–259, 2006.
[21]
L. A. Vincent, T. C. Peterson, V. R. Barros et al., “Observed trends in indices of daily temperature extremes in South America 1960–2000,” Journal of Climate, vol. 18, no. 23, pp. 5011–5023, 2005.
[22]
M. Hollander and D. A. Wolfe, Nonparametric Statistical Methods, John Wiley & Sons, New York, NY, USA, 1973.
[23]
M. New, B. Hewitson, D. B. Stephenson et al., “Evidence of trends in daily climate extremes over southern and west Africa,” Journal of Geophysical Research D: Atmospheres, vol. 111, no. 14, Article ID D14102, 2006.