We present a new second-order accurate numerical method for solving matrix coefficient elliptic equation on irregular domains with sharp-edged boundaries. Nontraditional finite element method with non-body-fitting grids is implemented on a fictitious domain in which the irregular domains are embedded. First we set the function and coefficient in the fictitious part, and the nonsmooth boundary is then treated as an interface. The emphasis is on the construction of jump conditions on the interface; a special position for the ghost point is chosen so that the method is more accurate. The test function basis is chosen to be the standard finite element basis independent of the interface, and the solution basis is chosen to be piecewise linear satisfying the jump conditions across the interface. This is an efficient method for dealing with elliptic equations in irregular domains with non-smooth boundaries, and it is able to treat the general case of matrix coefficient. The complexity and computational expense in mesh generation is highly decreased, especially for moving boundaries, while robustness, efficiency, and accuracy are promised. Extensive numerical experiments indicate that this method is second-order accurate in the norm in both two and three dimensions and numerically very stable. 1. Introduction Let ( ) be an open-bounded domain with a Lipschitz continuous boundary . We consider the variable coefficient elliptic equation where refers to the spatial variable, is the gradient operator, and the right-hand side is assumed to lie in . The coefficient is a matrix that is uniformly elliptic, and its entries are continuously differentiable on . For a given function on the boundary , the Dirichlet boundary condition is prescribed as Elliptic partial differential equations are often used to construct models of the most basic theories underlying physics and engineering, such as electromagnetism, material science, and fluid dynamics. Different kinds of boundary conditions arise with the wide range of applications, such as Dirichlet boundary condition, Neumann boundary condition, and Robin boundary condition. Elliptic equation on irregular domains has been studied by many researchers and several techniques have been developed. Finite element methods use a mesh triangulation to capture the boundary [1–4]. However, in many situations, such as when the boundary is moving, the mesh generation may be both computational expensive and challenging. A more preferred method is to combine the Cartesian grid method with level-set approach [5–7] to capture the boundary.
References
[1]
A. Quarteroni, Numerical Models for Differential Problems, vol. 2, Springer, Milan, Italy, 2009.
[2]
A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, vol. 23, Springer, Berlin, Germany, 1994.
[3]
R. H. Nochetto, M. Paolini, and C. Verdi, “An adaptive finite element method for two-phase Stefan problems in two space dimensions. II. Implementation and numerical experiments,” SIAM Journal on Scientific and Statistical Computing, vol. 12, no. 5, pp. 1207–1244, 1991.
[4]
A. Schmidt, “Computation of three dimensional dendrites with finite elements,” Journal of Computational Physics, vol. 125, pp. 293–312, 1996.
[5]
M. Sussman, P. Smereka, and S. Osher, “A level set approach for computing solutions to incompressible 2-phase flow,” Journal of Computational Physics, vol. 114, pp. 146–159, 1994.
[6]
S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, vol. 153, Springer, New York, NY, USA, 2003.
[7]
A. du Chéné, C. Min, and F. Gibou, “Second-order accurate computation of curvatures in a level set framework using novel high-order reinitialization schemes,” Journal of Scientific Computing, vol. 35, no. 2-3, pp. 114–131, 2008.
[8]
G. H. Shortley and R. Weller, “The numerical solution of Laplaces equation,” Journal of Applied Physics, vol. 9, pp. 334–348, 1938.
[9]
A. Mayo, “The fast solution of Poisson's and the biharmonic equations on irregular regions,” SIAM Journal on Numerical Analysis, vol. 21, no. 2, pp. 285–299, 1984.
[10]
C. S. Peskin, “Numerical analysis of blood flow in the heart,” Journal of Computational Physics, vol. 25, no. 3, pp. 220–252, 1977.
[11]
C. S. Peskin and B. F. Printz, “Improved volume conservation in the computation of flows with immersed elastic boundaries,” Journal of Computational Physics, vol. 105, no. 1, pp. 33–46, 1993.
[12]
X.-D. Liu, R. P. Fedkiw, and M. Kang, “A boundary condition capturing method for Poisson's equation on irregular domains,” Journal of Computational Physics, vol. 160, no. 1, pp. 151–178, 2000.
[13]
R. P. Fedkiw, T. Aslam, B. Merriman, and S. Osher, “A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method),” Journal of Computational Physics, vol. 152, no. 2, pp. 457–492, 1999.
[14]
S. Yu, Y. Zhou, and G. W. Wei, “Matched interface and boundary (MIB) method for elliptic problems with sharp-edged interfaces,” Journal of Computational Physics, vol. 224, no. 2, pp. 729–756, 2007.
[15]
Y. C. Zhou, S. Zhao, M. Feig, and G. W. Wei, “High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources,” Journal of Computational Physics, vol. 213, no. 1, pp. 1–30, 2006.
[16]
N. Moes, J. Dolbow, and T. Belytschko, “A finite element method for crack growth without remeshing,” International Journal for Numerical Methods in Engineering, vol. 46, no. 1, pp. 131–150, 1999.
[17]
G. J. Wagner, N. Mo?s, W. K. Liu, and T. Belytschko, “The extended finite element method for rigid particles in Stokes flow,” International Journal for Numerical Methods in Engineering, vol. 51, no. 3, pp. 293–313, 2001.
[18]
J. Chessa and T. Belytschko, “An extended finite element method for two-phase fluids: flow simulation and modeling.,” Journal of Applied Mechanics, vol. 70, no. 1, pp. 10–17, 2003.
[19]
Y. Gong, B. Li, and Z. Li, “Immersed-interface finite-element methods for elliptic interface problems with nonhomogeneous jump conditions,” SIAM Journal on Numerical Analysis, vol. 46, no. 1, pp. 472–495, 2008.
[20]
I. Babu?ka, “The finite element method for elliptic equations with discontinuous coefficients,” Computing, vol. 5, pp. 207–213, 1970.
[21]
A. Hansbo and P. Hansbo, “An unfitted finite element method, based on Nitsche's method, for elliptic interface problems,” Computer Methods in Applied Mechanics and Engineering, vol. 191, no. 47-48, pp. 5537–5552, 2002.
[22]
P. Colella and H. Johansen, “A Cartesian grid embedded boundary method for Poissons equation on irregular domains,” Journal of Computational Physics, vol. 60, pp. 85–147, 1998.
[23]
M. Oevermann and R. Klein, “A Cartesian grid finite volume method for elliptic equations with variable coefficients and embedded interfaces,” Journal of Computational Physics, vol. 219, no. 2, pp. 749–769, 2006.
[24]
M. Oevermann, C. Scharfenberg, and R. Klein, “A sharp interface finite volume method for elliptic equations on Cartesian grids,” Journal of Computational Physics, vol. 228, no. 14, pp. 5184–5206, 2009.
[25]
W. Ying and C. S. Henriquez, “A kernel-free boundary integral method for elliptic boundary value problems,” Journal of Computational Physics, vol. 227, no. 2, pp. 1046–1074, 2007.
[26]
S. Hou, W. Wang, and L. Wang, “Numerical method for solving matrix coefficient elliptic equation with sharp-edged interfaces,” Journal of Computational Physics, vol. 229, no. 19, pp. 7162–7179, 2010.
[27]
S. Hou, Z. Li, L. Wang, and W. Wang, “A numerical method for solving elasticity equations with interfaces,” Communications in Computational Physics, vol. 12, no. 2, pp. 595–612, 2012.
[28]
S. Hou, L. Wang, and W. Wang, “A numerical method for solving the elliptic interface problems with multi-domains and triple junction points,” Journal of Computational Mathematics, vol. 30, no. 5, pp. 504–516, 2012.
[29]
L. Wang, S. Hou, and L. Shi, “A numerical method for solving 3D elasticity equations with sharp-edged interfaces,” International Journal of Partial Differential Equations, vol. 2013, Article ID 476873, 13 pages, 2013.
[30]
L. Wang, S. Hou, and L. Shi, “An improved non-traditional finite element formulation for solving the elliptic interface problems,” Journal of Computational Mathematics. In press.
[31]
S. Hou, P. Song, L. Wang, and H. Zhao, “A weak formulation for solving elliptic interface problems without body fitted grid,” Journal of Computational Physics, vol. 249, pp. 80–95, 2013.
[32]
L. Wang, A numerical method for solving the elliptic and elasticity problems [Ph.D. Dissertation], Louisiana Tech University, 2011.
[33]
S. Hou and X.-D. Liu, “A numerical method for solving variable coefficient elliptic equation with interfaces,” Journal of Computational Physics, vol. 202, no. 2, pp. 411–445, 2005.