All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

Nonlinear Double-Layer Bragg Waveguide: Analytical and Numerical Approaches to Investigate Waveguiding Problem

DOI: 10.1155/2014/231498

Full-Text   Cite this paper   Add to My Lib

Abstract:

The paper is concerned with propagation of surface TE waves in a circular nonhomogeneous two-layered dielectric waveguide filled with nonlinear medium. The problem is reduced to the analysis of a nonlinear integral equation with a kernel in the form of the Green function. The existence of propagating TE waves for chosen nonlinearity (the Kerr law) is proved using the contraction mapping method. Conditions under which k waves can propagate are obtained, and intervals of localization of the corresponding propagation constants are found. For numerical solution of the problem, a method based on solving an auxiliary Cauchy problem (the shooting method) is proposed. In numerical experiment, two types of nonlinearities are considered and compared: the Kerr nonlinearity and nonlinearity with saturation. New propagation regime is found. 1. Introduction Theory of circle cylindrical dielectric waveguides attracts attention for a long time. Linear theory of such waveguides is known for years; see, for example, [1–4]. At the same time it is well known that the permittivity of a dielectric, in general, depends nonlinearly on the intensity of an electromagnetic field; see [5, 6]. For this reason, the linear theory can be applied only for fields of low intensity. However, for applications, sometimes it is necessary to raise the intensity of the field, for example, in order to compensate the losses. What happens in the case of high intensity (when the permittivity of the dielectric depends nonlinearly on the intensity of the field)? Is it possible to preserve waveguide regimes and, if so, how to determine propagation constants in the nonlinear case? It is not always easy to answer these questions. However, in the case of “simple” geometry (circle cylindrical and plane-layered waveguides) and polarized (TE and TM) electromagnetic waves, it is possible to answer these questions. To the best of our knowledge, the first rigorous study of polarized electromagnetic wave propagation in a nonlinear circle cylindrical dielectric homogeneous waveguide is in [7, 8]. Then, there were several works, where some important cases for nonlinear but homogeneous permittivity have been investigated; see [9–12]. The next step was to apply earlier developed technique to the cases of multilayered waveguides and inhomogeneous nonlinear permittivity. In the paper [13], we considered integral equation approach to derive dispersion equations in a nonlinear waveguiding problem. This approach can be used for numerical implementation. However, there exists a faster and simpler numerical approach that

References

[1]  M. J. Adams, An Introduction to Optical Waveguide, John Wiley & Sons, New York, NY, USA, 1981.
[2]  A. Snyder and J. Love, Optical Waveguide Theory, Chapman & Hall, London, UK, 1983.
[3]  G. I. Veselov and S. B. Raevskii, Layered Metall-Dielectric Waveguides, Radio i Svyaz, Moscow, Russia, 1988, (Russian).
[4]  A. S. Zil'bergleit and Yu. I. Kopilevich, Spektralnaya Teoriya Regulyarnykh Volnovodov, FTI, Leningrad, Russia, 1983, (Russian).
[5]  L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Course of Theoretical Physics, vol. 8 of Electrodynamics of Continuous Media, Butterworth-Heinemann, Oxford, UK, 1993.
[6]  N. N. Akhmediev and A. Ankevich, Solitons, Nonlinear Pulses and Beams, Chapman & Hall, London, UK, 1997.
[7]  P. N. Eleonskii, L. G. Oganes’yants, and V. P. Silin, “Cylindrical nonlinear waveguides,” Journal of Experimental and Theoretical Physics, vol. 35, no. 1, pp. 44–47, 1972.
[8]  P. N. Eleonskii and V. P. Silin, “Propagation of electromagnetic waves in an inhomogeneous nonlinear medium,” Journal of Experimental and Theoretical Physics, vol. 39, no. 1, pp. 67–70, 1974.
[9]  Y. Smirnov, H. W. Schürmann, and Y. Shestopalov, “Integral equation approach for the propagation of TE-waves in a nonlinear dielectric cylindrical waveguide,” Journal of Nonlinear Mathematical Physics, vol. 11, no. 2, pp. 256–268, 2004.
[10]  Yu. G. Smirnov and S. N. Kupriyanova, “Propagation of electro-magnetic waves in cylindrical dielectric waveguides filled with a nonlinear medium,” Computational Mathematics and Mathematical Physics, vol. 44, no. 10, pp. 1850–1860, 2004.
[11]  H. W. Schürmann, G. Yu. Smirnov, and V. Yu. Shestopalov, “Propagation of te-waves in cylindrical nonlinear dielectric waveguides,” Physical Review E, vol. 71, no. 1, Article ID 016614, 10 pages, 2005.
[12]  Yu. G. Smirnov and E. A. Horosheva, “On the solvability of the nonlinear boundary eigenvalue problem for tm waves propagation in a circle cylyindrical nonlinear waveguide,” Izvestiya Vysshikh Uchebnykh Zavedenij. Povolzh. Region. Fiziki-Matematicheskie Nauki, no. 3, pp. 55–70, 2010, (Russian).
[13]  Yu. G. Smirnov and D. V. Valovik, “On the problem of electromagnetic waves propagating along a nonlinear inhomogeneous cylindrical waveguide,” ISRN Mathematical Physics, vol. 2013, Article ID 184325, 7 pages, 2013.
[14]  J. D. Chatterton and J. L. Shohet, “Guided modes and loss in a plasma-filled Bragg waveguide,” Journal of Applied Physics, vol. 102, no. 6, Article ID 063304, 2007.
[15]  Yu. Rapoport, A. Boardman, V. Grimalsky, et al., “Metamaterials for space physics and the new method for modeling isotropic and hyperbolic nonlinear concentrators,” in Proceedings of the 14th International Conference on Mathematical Methods in Electromagnetic Theory, pp. 76–79, Ukraine, Kharkiv, August 2012.
[16]  Yu. G. Smirnov and D. V. Valovik, Electromagnetic Wave Propagation in Non-Linear Layered Waveguide Structures, Penza State University Press, Penza, Russia, 2011.
[17]  A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics: A Unified Introduction with Applications, Birkh?user, Basel, Switzerland, 1988.
[18]  D. V. Valovik and Yu. G. Smirnov, “Propagation of TM waves in a Kerr nonlinear layer,” Computational Mathematics and Mathematical Physics, vol. 48, no. 12, pp. 2217–2225, 2008.
[19]  D. V. Valovik, “Propagation of TM waves in a layer with arbitrary nonlinearity,” Computational Mathematics and Mathematical Physics, vol. 51, no. 9, pp. 1622–1632, 2011.
[20]  D. V. Valovik and E. V. Zarembo, “The method of cauchy problem for solving a nonlinear eigenvalue transmission problem for tm waves propagating in a layer with arbitrary nonlinearity,” Computational Mathematics and Mathematical Physics, vol. 53, no. 1, pp. 78–92, 2013.
[21]  R. Courant and D. Hilbert, Methods of Mathematical Physics, vol. 1, Interscience Publishers, New York, NY, USA, 1953.
[22]  M. A. Naimark, Linear Differential Operators. Part I: Elementary Theory of Linear Differential Operators. Part II: Linear Differential Operators in Hilbert Space, Frederick Ungar Publishing, New York, NY, USA, 1967.
[23]  V. S. Vladimirov, Equations of Mathematical Physics, Mir, Moscow, Russia, 1984.
[24]  N. P. Erugin, Book for Reading on General Course of Differential Equations, Nauka i Tekhnika, Minsk, Russia, 1979, Russian.
[25]  D. V. Valovik and E. V. Zarembo, “Solution of the nonlinear eigenvalue boundary-value problem for tm electromagnetic waves propagating in a kerrnonlinear layer by means of the cauchy problem method,” Journal of Communications Technology and Electronics, vol. 58, no. 1, pp. 62–65, 2013.
[26]  E. Yu. Smol’kin, “Method of cauchy problem to solve a nonlinear transmission eigenvalue problem for tm wave propagating in a circle double-layer dielectric waveguide with kerr nonlinearity,” Izvestiya Vysshikh Uchebnykh Zavedenij. Povolzh. Region. Fiziki-Matematicheskie Nauki, no. 4, pp. 49–58, 2012 (Russian).
[27]  D. V. Valovik and E. Yu. Smol’kin, “Numerical solution to the problem of electromagnetis tm wave propagation in a circle dielectric waveguide filled with nonlinear medium,” Izvestiya Vysshikh Uchebnykh Zavedenij. Povolzh. Region. Fiziki-Matematicheskie Nauki, no. 3, pp. 29–37, 2012 (Russian).
[28]  Yu. G. Smirnov and D. V. Valovik, “Nonlinear effects of electromagnetic tm wave propagation in anisotropic layer with kerr nonlinearity,” Advances in Mathematical Physics, vol. 2012, Article ID 609765, 21 pages, 2012.
[29]  D. V. Valovik, Inverse Problems and Large Scale Computations, vol. 52 of Springer Proceeding in Mathematics & Statistics, Springer, New York, NY, USA, 2013.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133