Recent Italian earthquakes have underlined the need for wide monitoring and safety assessment of architectonical heritage. This has emerged also from requirements of the new Italian Technical Recommendations for buildings. Within this subject the paper investigates the seismic vulnerability of a specific monumental masonry building: the Vicarious Palace ( Palazzo del Vicario) in Pescia, a small town near Florence. The structural behavior of the Palace was investigated using a finite element model in which the non-linearities of the masonry were considered by proper constitutive assumptions. The seismic behavior was evaluated by the pushover method, according to the Italian Technical Recommendations. The results were compared with the ones obtained by a simplified approach based on the kinematic theorem of limit analysis. Comparisons of the expected seismic demand vs the seismic capacity of the Palace confirm the weakness of this type of building to suffer extensive damage under earthquakes, as frequently observed in similar construction typologies. Additionally, the comprehension of the structural behavior under seismic loading allows the identification of a proper retrofitting strategy.
References
[1]
Valluzzi, M.R.; Saisi, A.; Cardani, G.; Binda, L. Vulnerability analysis of the historical buildings in seismic area by a multilevel approach. Asian J. Civil Eng. (Build. Hous.) 2006, 7, 343–357.
[2]
Paganoni, S.; D’Ayala, D. Assessment and analysis of damage in L’Aquila historic city centre after 6th April 2009. Bull. Earthquake Eng. 2011, 9, 81–104, doi:10.1007/s10518-010-9224-4.
[3]
Ibenholt, K.; Bowitz, E. Economic impacts of cultural heritage—Research and perspectives. J. Cult. Herit. 2009, 10, 1–8, doi:10.1016/j.culher.2008.09.002.
[4]
Modena, M.; Casarin, F. Structural assessment and seismic vulnerability analysis of the Reggio Emilia Cathedral, Italy. In Proceeding of Structural Analysis of Historical Constructions, New Delhi, India, 6–8 November 2006.
[5]
Foraboschi, P.; Barbieri, A.; Siviero, E. Lettura Strutturale Delle Costruzioni (in Italian); CittàStudiEdizioni: Milano, Italy, 1997.
Orlando, M.; Bartoli, G.; Betti, M. Evaluation study on structural fault of a Renaissance Italian Palace. Eng. Struct. 2010, 32, 1801–1813, doi:10.1016/j.engstruct.2010.03.001.
[8]
Ramos, L.F.; Fernandes, F.M.; Krakowiak, K.J.; Louren?o, P.B. Failure analysis of Monastery of Jerónimos, Lisbon: How to learn from sophisticated numerical models. Eng. Fail. Anal. 2007, 14, 280–300, doi:10.1016/j.engfailanal.2006.02.002.
[9]
Bento, R.; Lopes, M.; Cardoso, R. Seismic evaluation of old masonry buildings. Part I: Method description and application to a case-study. Eng. Struct. 2005, 27, 2024–2035, doi:10.1016/j.engstruct.2005.06.012.
[10]
Bento, R.; Lopes, M.; Cardoso, R. Seismic evaluation of old masonry buildings. Part II: Analysis of strengthening solutions for a case study. Eng. Struct. 2005, 27, 2014–2023, doi:10.1016/j.engstruct.2005.06.011.
[11]
Vignoli, A.; Betti, M. Numerical assessment of the static and seismic behaviour of the Basilica of Santa Maria all’Impruneta (Italy). Construct. Build. Mater. 2011, 25, 4308–4324, doi:10.1016/j.conbuildmat.2010.12.028.
[12]
Milani, G.; Milani, E.; Malvezzi, R.; Mallardo, V. Seismic vulnerability of historical masonry buildings: A case study in Ferrara. Eng. Struct. 2008, 30, 2223–2241, doi:10.1016/j.engstruct.2007.11.006.
[13]
Carpinteri, A.; Binda, L.; Anzani, A.; Invernizzi, S.; Lacidogna, G. A multilevel approach for the damage assessment of historic masonry towers. J. Cult. Herit. 2010, 11, 459–470, doi:10.1016/j.culher.2009.11.008.
[14]
Saisi, A.; Binda, L. Research on historic structures in seismic areas in Italy. Prog. Struct. Eng. Mater. 2005, 7, 71–85, doi:10.1002/pse.194.
[15]
Giuffrè, A. Sicurezza e conservazione dei centri storici. Il caso Ortigia; Laterza: Bari, Italy, 1993.
[16]
Salvagnini, G. Pescia, una città. Proposta metodologica per la lettura di un centro antico; La Valdera: Firenze, Italy, 1975.
[17]
Merlo, A. La loggia nella città medioevale. Genesi, rilievo e ricostruzione dei processi di trasformazione: l’esempio di Pescia. In Tesi di dottorato, Sezione Architettura e Disegno; Firenze, Italy, 2001.
[18]
Salvagnini, G. Pescia, una comunità nel Seicento (1563–1738). Granducato Edizioni: Firenze, Italy, 1989.
[19]
Vignoli, A.; Galano, L.; Chiostrini, S. A. In-situ tests and numerical simulations on structural behaviour of ancient masonry. In Proceedings of Monument-98, Workshop on Seismic Performance of Monuments, Lisbon, Portugal, 12–14 November 1998.
[20]
Vignoli, A.; Galano, L.; Chiostrini, S. Mechanical characterization of stone masonry panels and effectiveness of strengthening techniques. In Proceeding of the 4th International Symposium on Computer Methods in Structural Masonry, London, UK, 3–5 September 1997.
Willam, K.J.; Warnke, E.P. Constitutive model for the triaxial behaviour of concrete. In. In Proceedings of the IASBE Seminar on Concrete Structures Subjected to Triaxial Stresses, Bergamo, Italy, 17–19 May 1974; International Association for Bridge and Structural Engineering; Zurich, Switzerland; 19, pp. 1–30.
[23]
Louren?o, P.B.; Zucchini, A. Mechanics of masonry in compression: Results from a homogenisation approach. Comput. Struct. 2007, 85, 193–204, doi:10.1016/j.compstruc.2006.08.054.
[24]
Donida, G.; Brighenti, R.; Cerioni, R. Use of incompatible displacement modes in a finite element model to analyze the dynamic behavior of unreinforced masonry panels. Comput. Struct. 1995, 57, 47–57, doi:10.1016/0045-7949(94)00590-Y.
Vignoli, A.; Betti, M. Modelling and analysis of a Romanesque church under earthquake loading: Assessment of seismic resistance. Eng. Struct. 2008, 30, 352–367, doi:10.1016/j.engstruct.2007.03.027.
[27]
Speranza, E.; D’Ayala, D. Definition of collapse mechanisms and seismic vulnerability of historic masonry buildings. Earthquake Spectra 2003, 19, 479–509, doi:10.1193/1.1599896.
[28]
Penna, A.; Lagomarsino, S.; Falasco, A. On the use of pushover analysis for existing masonry buildings. In Proceeding of the 1st European Conference on Earthquake Engineering and Seismology, Geneva, Switzerland, 3–8 September 2006.
[29]
D’Amore, E.; Kim, S. Push-over analysis procedures in earthquake engineering. Earthquake Spectra 1999, 15, 417–434, doi:10.1193/1.1586051.
[30]
Amr, S.E.; Vassilis, K.P. Evaluation of conventional and adaptive pushover analysis I: Methodology. J. Earthquake Eng. 2005, 9, 923–941.
[31]
Vassilis, K.P.; Amr, S.E.; Juan, F.P. Evaluation of conventional and adaptive pushover analysis II: Comparative results. J. Earthquake Eng. 2006, 10, 127–151.
[32]
Antoniou, S.; Pinho R., *REPLACE*. Advantages and limitations of adaptive and non adaptive force-based pushover procedures. J. Earthquake Eng. 2004, 8, 497–522.
[33]
Goel, R.K.; Chopra, A.K. A modal pushover analysis procedure to estimate seismic demands for unsymmetric-plan buildings. Earthquake Eng. Struct. Dyn. 2004, 33, 903–927, doi:10.1002/eqe.380.
[34]
Ramos, L.; Louren?o, P.B. Modeling and vulnerability of historical city centers in seismic areas: A case study in Lisbon. Eng. Struct. 2004, 26, 1295–1310, doi:10.1016/j.engstruct.2004.04.008.