Recently, an extended operator of fractional derivative related to a generalized Beta function was used in order to obtain some generating relations involving the extended hypergeometric functions [1]. The main object of this paper is to present a further generalization of the extended fractional derivative operator and apply the generalized extended fractional derivative operator to derive linear and bilinear generating relations for the generalized extended Gauss, Appell and Lauricella hypergeometric functions in one, two and more variables. Some other properties and relationships involving the Mellin transforms and the generalized extended fractional derivative operator are also given.
References
[1]
?zarslan, M.A.; ?zergin, E. Some generating relations for extended hypergeometric function via generalized fractional derivative operator. Math. Comput. Model. 2010, 52, 1825–1833, doi:10.1016/j.mcm.2010.07.011.
[2]
Chaudhry, M.A.; Temme, N.M.; Veling, E.J.M. Asymptotic and closed form of a generalized incomplete gamma function. J. Comput. Appl. Math. 1996, 67, 371–379, doi:10.1016/0377-0427(95)00018-6.
[3]
Chaudhry, M.A.; Qadir, A.; Rafique, M.; Zubair, S.M. Extension of Euler’s beta function. J. Comput. Appl. Math. 1997, 78, 19–32, doi:10.1016/S0377-0427(96)00102-1.
[4]
Chaudhry, M.A.; Zubair, S.M. Generalized incomplete gamma functions with applications. J. Comput. Appl. Math. 1994, 55, 99–124, doi:10.1016/0377-0427(94)90187-2.
[5]
Chaudhry, M.A.; Zubair, S.M. On the decomposition of generalized incomplete gamma functions with applications of Fourier transforms. J. Comput. Appl. Math. 1995, 59, 253–284, doi:10.1016/0377-0427(94)00026-W.
[6]
Miller, A.R. Reduction of a generalized incomplete gamma function, related Kampé de Fériet functions, and incomplete Weber integrals. Rocky Mountain J. Math. 2000, 30, 703–714, doi:10.1216/rmjm/1022009290.
[7]
?zergin, E.; ?zarslan, M.A.; Altn, A. Extension of gamma, beta and hypergeometric functions. J. Comput. Appl. Math. 2011, 235, 4601–4610, doi:10.1016/j.cam.2010.04.019.
Chaudhry, M.A.; Zubair, S.M. On a Class of Incomplete Gamma Functions with Applications; CRC Press (Chapman and Hall): Boca Raton, FL, USA, 2002.
[10]
Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Tables of Integral Transforms, Volume II; McGraw-Hill Book Company: New York, NY, USA, 1954.
[11]
Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications, Translated from the Russian: Integrals and Derivatives of Fractional Order and Some of Their Applications (“Nauka i Tekhnika", Minsk, 1987); Gordon and Breach Science Publishers: Reading, UK, 1993.
[12]
Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations. North-Holland Mathematical Studies; Elsevier (North-Holland) Science Publishers: Amsterdam, The Netherlands, 2006; Volume 204.
[13]
Appell, P.; Kampé de Fériet, J. Fonctions Hypergéométriques et Hypersphériques: Polyn?mes d’Hermite; Gauthier-Villars: Paris, France, 1926.
[14]
Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons: New York, NY, USA, 1984.
[15]
Srivastava, H.M.; Saxena, R.K. Operators of fractional integration and their applications. Appl. Math. Comput. 2001, 118, 1–52, doi:10.1016/S0096-3003(99)00208-8.