All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...
Axioms  2012 

Axiomatic of Fuzzy Complex Numbers

DOI: 10.3390/axioms1010021

Keywords: mathematical analysis, number theory, non-classical logics, fuzzy logic, fuzzy sets, fuzzy measure theory, fuzzy systems, A.I.

Full-Text   Cite this paper   Add to My Lib

Abstract:

Fuzzy numbers are fuzzy subsets of the set of real numbers satisfying some additional conditions. Fuzzy numbers allow us to model very difficult uncertainties in a very easy way. Arithmetic operations on fuzzy numbers have also been developed, and are based mainly on the crucial Extension Principle. When operating with fuzzy numbers, the results of our calculations strongly depend on the shape of the membership functions of these numbers. Logically, less regular membership functions may lead to very complicated calculi. Moreover, fuzzy numbers with a simpler shape of membership functions often have more intuitive and more natural interpretations. But not only must we apply the concept and the use of fuzzy sets, and its particular case of fuzzy number, but also the new and interesting mathematical construct designed by Fuzzy Complex Numbers, which is much more than a correlate of Complex Numbers in Mathematical Analysis. The selected perspective attempts here that of advancing through axiomatic descriptions.

References

[1]  Ramot, D.; Milo, R.; Friedman, M.; Kandel, A. Complex fuzzy sets. IEEE Trans. Fuzzy Syst. 2002, 10, 171–186, doi:10.1109/91.995119.
[2]  Nóvak, V.; Perfilieva, I.; Mockor, J. Mathematical Principles of Fuzzy Logic; Kluwer Academic Publishers: Boston, MA, USA, 1999. Chapters 1–2.
[3]  Wu, Y.; Zhang, B.; Lu, J. Fuzzy logic and neuro-fuzzy systems: A systematic introduction. Int. J. AI Expert Syst. 2011, 2, 47–80.
[4]  Buckley, J.J. Fuzzy complex numbers. Fuzzy Sets Syst. 1989, 33, 333–345, doi:10.1016/0165-0114(89)90122-X.
[5]  Van der Waerden, B.L. A History of Algebra; Springer-Verlag: New York, NY, USA, 1985.
[6]  Buckley, J.J.; Qu, Y. Fuzzy complex analysis I: Di?erentiation. Fuzzy Sets Syst. 1991, 41, 269–284, doi:10.1016/0165-0114(91)90131-9.
[7]  Zadeh, L.A. Fuzzy Sets, Fuzzy Logic and Fuzzy Systems: Selected Papers. In Advances in Fuzzy Systems—Applications and Theory; Zadeh, L.A., George, J.K., Bo, Y., Eds.; World Scientific: Hackensack, NJ, USA, 1996; Volume 6, pp. 324–376.
[8]  Yuan, B.; Klir, G.J. Fuzzy Sets and Fuzzy Logic: Theory and Applications; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1995.
[9]  Wang, Z.; Klir, G.J. Fuzzy Measure Theory; Plenum Press: New York, NY, USA, 1992.
[10]  Wang, Z.; Klir, G.J. Generalized Measure Theory. In IFSR International Series on Systems; Springer-Verlag: New York, NY, USA, 2009.
[11]  Hsieh, C.H.; Chen, S.H. Similarity of Generalized Fuzzy Numbers with Graded Mean Integration Representation. In Proceedings 8th International Fuzzy Systems Association World Congress, Taipei, Taiwan, 10 January 2009; 2, pp. 551–555.
[12]  Garrido, A. Classifying fuzzy numbers. Adv. Model. Optim. (AMO) 2011, 13, 89–96.
[13]  Garrido, A. Searching the arcane origins of fuzzy logic. Brain 2011, 2, 51–57.
[14]  Garrido, A. Fuzzy boolean algebras and Lukasiewicz logic. Acta Univ. Apulensis (AUA) 2010, 22, 101–112.
[15]  Nguyen, H.T. Fuzzy Mathematics and Statistical Applications; Wu-Nan Book Company: Taipei, Taiwan, 2000.
[16]  Fu, X.; Shen, Q. Fuzzy Complex Numbers and their Application for Classifiers Performance Evaluation. Pattern Recognit. 2011, 44, 1403–1417, doi:10.1016/j.patcog.2011.01.011.
[17]  Wu, C.; Qiu, J. Some remarks for fuzzy complex analysis. Fuzzy Sets Syst. 1999, 106, 231–238, doi:10.1016/S0165-0114(97)00282-0.
[18]  Tamir, D.E.; Kandel, A. Axiomatic theory of complex fuzzy logic and complex fuzzy classes. Int. J. Comput. Commun. Control 2011, 6, 562–576.
[19]  Tamir, D.E.; Lin, J.; Kandel, A. A new interpretation of complex membership grade. Int. J. Intell. Syst. 2011, 26, 283–312.
[20]  Qiu, J.; Wu, C.; Li, F. On the restudy of fuzzy complex analysis. Fuzzy Sets Syst. 2001, 120, 517–521, doi:10.1016/S0165-0114(99)00076-7.
[21]  Dick, S. Toward complex fuzzy logic. IEEE Trans. Fuzzy Syst. 2005, 13, 405–414, doi:10.1109/TFUZZ.2004.839669.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133