全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2008 

Global Regulation of Nucleotide Biosynthetic Genes by c-Myc

DOI: 10.1371/journal.pone.0002722

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background The c-Myc transcription factor is a master regulator and integrates cell proliferation, cell growth and metabolism through activating thousands of target genes. Our identification of direct c-Myc target genes by chromatin immunoprecipitation (ChIP) coupled with pair-end ditag sequencing analysis (ChIP-PET) revealed that nucleotide metabolic genes are enriched among c-Myc targets, but the role of Myc in regulating nucleotide metabolic genes has not been comprehensively delineated. Methodology/Principal Findings Here, we report that the majority of genes in human purine and pyrimidine biosynthesis pathway were induced and directly bound by c-Myc in the P493-6 human Burkitt's lymphoma model cell line. The majority of these genes were also responsive to the ligand-activated Myc-estrogen receptor fusion protein, Myc-ER, in a Myc null rat fibroblast cell line, HO.15 MYC-ER. Furthermore, these targets are also responsive to Myc activation in transgenic mouse livers in vivo. To determine the functional significance of c-Myc regulation of nucleotide metabolism, we sought to determine the effect of loss of function of direct Myc targets inosine monophosphate dehydrogenases (IMPDH1 and IMPDH2) on c-Myc-induced cell growth and proliferation. In this regard, we used a specific IMPDH inhibitor mycophenolic acid (MPA) and found that MPA dramatically inhibits c-Myc-induced P493-6 cell proliferation through S-phase arrest and apoptosis. Conclusions/Significance Taken together, these results demonstrate the direct induction of nucleotide metabolic genes by c-Myc in multiple systems. Our finding of an S-phase arrest in cells with diminished IMPDH activity suggests that nucleotide pool balance is essential for c-Myc's orchestration of DNA replication, such that uncoupling of these two processes create DNA replication stress and apoptosis.

References

[1]  Hecht JL, Aster JC (2000) Molecular biology of Burkitt's lymphoma. J Clin Oncol 18: 3707–3721.
[2]  Liao DJ, Dickson RB (2000) c-Myc in breast cancer. Endocr Relat Cancer 7: 143–164.
[3]  Nesbit CE, Tersak JM, Prochownik EV (1999) MYC oncogenes and human neoplastic disease. Oncogene 18: 3004–3016.
[4]  Zeller KI, Jegga AG, Aronow BJ, O'Donnell KA, Dang CV (2003) An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets. Genome Biol 4: R69.
[5]  Cory S, Harris AW, Langdon WY, Alexander WS, Corcoran LM, et al. (1987) The myc oncogene and lymphoid neoplasia: from translocations to transgenic mice. Hamatol Bluttransfus 31: 248–251.
[6]  Langdon WY, Harris AW, Cory S, Adams JM (1986) The c-myc oncogene perturbs B lymphocyte development in E-mu-myc transgenic mice. Cell 47: 11–18.
[7]  Leder A, Pattengale PK, Kuo A, Stewart TA, Leder P (1986) Consequences of widespread deregulation of the c-myc gene in transgenic mice: multiple neoplasms and normal development. Cell 45: 485–495.
[8]  Pelengaris S, Littlewood T, Khan M, Elia G, Evan G (1999) Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol Cell 3: 565–577.
[9]  Shchors K, Shchors E, Rostker F, Lawlor ER, Brown-Swigart L, et al. (2006) The Myc-dependent angiogenic switch in tumors is mediated by interleukin 1beta. Genes Dev 20: 2527–2538.
[10]  Adhikary S, Eilers M (2005) Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 6: 635–645.
[11]  Marhin WW, Chen S, Facchini LM, Fornace AJ Jr, Penn LZ (1997) Myc represses the growth arrest gene gadd45. Oncogene 14: 2825–2834.
[12]  Schneider A, Peukert K, Eilers M, Hanel F (1997) Association of Myc with the zinc-finger protein Miz-1 defines a novel pathway for gene regulation by Myc. Curr Top Microbiol Immunol 224: 137–146.
[13]  Baudino TA, Cleveland JL (2001) The Max network gone mad. Mol Cell Biol 21: 691–702.
[14]  Hooker CW, Hurlin PJ (2006) Of myc and mnt. J Cell Sci 119: 208–216.
[15]  McArthur GA, Laherty CD, Queva C, Hurlin PJ, Loo L, et al. (1998) The Mad protein family links transcriptional repression to cell differentiation. Cold Spring Harb Symp Quant Biol 63: 423–433.
[16]  Dominguez-Sola D, Ying CY, Grandori C, Ruggiero L, Chen B, et al. (2007) Non-transcriptional control of DNA replication by c-Myc. Nature.
[17]  Cole MD, Nikiforov MA (2006) Transcriptional activation by the Myc oncoprotein. Curr Top Microbiol Immunol 302: 33–50.
[18]  Cowling VH, Cole MD (2007) The Myc transactivation domain promotes global phosphorylation of the RNA polymerase II carboxy-terminal domain independently of direct DNA binding. Mol Cell Biol 27: 2059–2073.
[19]  Cole MD, McMahon SB (1999) The Myc oncoprotein: a critical evaluation of transactivation and target gene regulation. Oncogene 18: 2916–2924.
[20]  Dang CV (1999) c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol 19: 1–11.
[21]  Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, et al. (2003) Genomic targets of the human c-Myc protein. Genes Dev 17: 1115–1129.
[22]  Amati B, Alevizopoulos K, Vlach J (1998) Myc and the cell cycle. Front Biosci 3: D250–268.
[23]  Burgin A, Bouchard C, Eilers M (1998) Control of cell proliferation by Myc proteins. Results Probl Cell Differ 22: 181–197.
[24]  Gartel AL, Ye X, Goufman E, Shianov P, Hay N, et al. (2001) Myc represses the p21(WAF1/CIP1) promoter and interacts with Sp1/Sp3. Proc Natl Acad Sci U S A 98: 4510–4515.
[25]  Hermeking H, Rago C, Schuhmacher M, Li Q, Barrett JF, et al. (2000) Identification of CDK4 as a target of c-MYC. Proc Natl Acad Sci U S A 97: 2229–2234.
[26]  Mateyak MK, Obaya AJ, Sedivy JM (1999) c-Myc regulates cyclin D-Cdk4 and -Cdk6 activity but affects cell cycle progression at multiple independent points. Mol Cell Biol 19: 4672–4683.
[27]  Wu S, Cetinkaya C, Munoz-Alonso MJ, von der Lehr N, Bahram F, et al. (2003) Myc represses differentiation-induced p21CIP1 expression via Miz-1-dependent interaction with the p21 core promoter. Oncogene 22: 351–360.
[28]  Miliani de Marval PL, Macias E, Rounbehler R, Sicinski P, Kiyokawa H, et al. (2004) Lack of cyclin-dependent kinase 4 inhibits c-myc tumorigenic activities in epithelial tissues. Mol Cell Biol 24: 7538–7547.
[29]  Boyd KE, Farnham PJ (1997) Myc versus USF: discrimination at the cad gene is determined by core promoter elements. Mol Cell Biol 17: 2529–2537.
[30]  Bello-Fernandez C, Packham G, Cleveland JL (1993) The ornithine decarboxylase gene is a transcriptional target of c-Myc. Proc Natl Acad Sci U S A 90: 7804–7808.
[31]  Shim H, Dolde C, Lewis BC, Wu CS, Dang G, et al. (1997) c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci U S A 94: 6658–6663.
[32]  Nikiforov MA, Chandriani S, O'Connell B, Petrenko O, Kotenko I, et al. (2002) A functional screen for Myc-responsive genes reveals serine hydroxymethyltransferase, a major source of the one-carbon unit for cell metabolism. Mol Cell Biol 22: 5793–5800.
[33]  Zeller KI, Zhao X, Lee CW, Chiu KP, Yao F, et al. (2006) Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc Natl Acad Sci U S A 103: 17834–17839.
[34]  Remondini D, O'Connell B, Intrator N, Sedivy JM, Neretti N, et al. (2005) Targeting c-Myc-activated genes with a correlation method: detection of global changes in large gene expression network dynamics. Proc Natl Acad Sci U S A 102: 6902–6906.
[35]  O'Connell BC, Cheung AF, Simkevich CP, Tam W, Ren X, et al. (2003) A large scale genetic analysis of c-Myc-regulated gene expression patterns. J Biol Chem 278: 12563–12573.
[36]  Wood LJ, Mukherjee M, Dolde CE, Xu Y, Maher JF, et al. (2000) HMG-I/Y, a new c-Myc target gene and potential oncogene. Mol Cell Biol 20: 5490–5502.
[37]  Beer S, Zetterberg A, Ihrie RA, McTaggart RA, Yang Q, et al. (2004) Developmental context determines latency of MYC-induced tumorigenesis. PLoS Biol 2: e332.
[38]  Zeller KI, Haggerty TJ, Barrett JF, Guo Q, Wonsey DR, et al. (2001) Characterization of nucleophosmin (B23) as a Myc target by scanning chromatin immunoprecipitation. J Biol Chem 276: 48285–48291.
[39]  Bostock CJ, Prescott DM, Kirkpatrick JB (1971) An evaluation of the double thymidine block for synchronizing mammalian cells at the G1-S border. Exp Cell Res 68: 163–168.
[40]  Whitfield ML, Zheng LX, Baldwin A, Ohta T, Hurt MM, et al. (2000) Stem-loop binding protein, the protein that binds the 3′ end of histone mRNA, is cell cycle regulated by both translational and posttranslational mechanisms. Mol Cell Biol 20: 4188–4198.
[41]  Xeros N (1962) Deoxyriboside control and synchronization of mitosis. Nature 194: 682–683.
[42]  Yu C, Hu J, Feng Y, Tao D, Wu J, et al. (2005) Differential expression of cyclins A, B1, D3 and E in G1 phase of the cell cycle between the synchronized and asynchronously growing MOLT-4 cells. Int J Mol Med 16: 645–651.
[43]  Kalejta RF, Shenk T, Beavis AJ (1997) Use of a membrane-localized green fluorescent protein allows simultaneous identification of transfected cells and cell cycle analysis by flow cytometry. Cytometry 29: 286–291.
[44]  Dai M, Wang P, Boyd AD, Kostov G, Athey B, et al. (2005) Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 33: e175.
[45]  Pajic A, Spitkovsky D, Christoph B, Kempkes B, Schuhmacher M, et al. (2000) Cell cycle activation by c-myc in a burkitt lymphoma model cell line. Int J Cancer 87: 787–793.
[46]  Ji Y, Gu J, Makhov AM, Griffith JD, Mitchell BS (2006) Regulation of the interaction of inosine monophosphate dehydrogenase with mycophenolic Acid by GTP. J Biol Chem 281: 206–212.
[47]  Kunz BA, Kohalmi SE (1991) Modulation of mutagenesis by deoxyribonucleotide levels. Annu Rev Genet 25: 339–359.
[48]  Mathews CK (2006) DNA precursor metabolism and genomic stability. Faseb J 20: 1300–1314.
[49]  Mao DY, Watson JD, Yan PS, Barsyte-Lovejoy D, Khosravi F, et al. (2003) Analysis of Myc bound loci identified by CpG island arrays shows that Max is essential for Myc-dependent repression. Curr Biol 13: 882–886.
[50]  Chabes AL, Bjorklund S, Thelander L (2004) S Phase-specific transcription of the mouse ribonucleotide reductase R2 gene requires both a proximal repressive E2F-binding site and an upstream promoter activating region. J Biol Chem 279: 10796–10807.
[51]  DeGregori J, Kowalik T, Nevins JR (1995) Cellular targets for activation by the E2F1 transcription factor include DNA synthesis- and G1/S-regulatory genes. Mol Cell Biol 15: 4215–4224.
[52]  Fell DA (1992) Metabolic control analysis: a survey of its theoretical and experimental development. Biochem J 286 ( Pt 2): 313–330.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133