[1] | Rashbass J (1996) Modelling tissues on the computer. Trends in Cell Biology 6: 280–281.
|
[2] | Galle J, Loeffler M, Drasdo D (2005) Modeling the effect of deregulated proliferation and apoptosis on the growth dynamics of epithelial cell populations in vitro. Biophysical Journal 88: 62–75.
|
[3] | Sun T, McMinn M, Coakley S, Holcombe M, Smallwood R, et al. (2007) An integrated systems biology approach to understanding the rules of keratinocyte colony formation. Journal of the Royal Society Interface 4: 1107–1117.
|
[4] | Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6: 331–344.
|
[5] | Gallico GG, O'Connor NE, Compton CC, Kehinde Q, Green H (1984) Permanent coverage of large burn wounds with autologous cultured human epithelium. New Eng J Med 311: 448–451.
|
[6] | MacNeil S (2007) Progress and Opportunities in Tissue Engineering of Skin. Nature 445: 874–880.
|
[7] | Sun T, Higham M, Layton C, Haycock J, Short R, et al. (2004) Developments in xenobiotic free culture of human keratinocytes for clinical use. Wound Rep Reg 12: 262–634.
|
[8] | Sun T, Mai S, Haycock J, Ryan A, MacNeil S (2005) Self-organisation of skin cells in 3D-electrospun polystyrene scaffolds. Tissue Engineering 11: 1023–1033.
|
[9] | Bullock AJ, Higham MC, MacNeil S (2006) Use of human fibroblasts in the development of a xenobiotic-free culture and delivery system for human keratinocytes. Tissue Engineering 12: 245–255.
|
[10] | Coakley S, Smallwood R, Holcombe M (2006) Using X-machines as a formal basis for describing agents in agent-based modeling. Proceedings of the Agent-Directed Simulation (ADS'06) Conference April: 2–6.
|
[11] | Angel P, Szabowski A (2002) Function of AP-1 target genes in mesenchymal-epithelial cross-talk in skin. Biochemical Pharmacology 64: 949–856.
|
[12] | Clavel C, Montero BV, Garric X, Moles JP, Montero JL (2005) Synthesis and biological activity of M6-P and M6-P analogs of fibroblast and keratinocyte proliferation. Il Farmaco 60: 721–725.
|
[13] | Williams IR, Kupper TS (1996) Minireview: Immunity at the surface: Homeostatic mechanisms of the skin immune system. Life Sciences 58: 1485–1507.
|
[14] | Owen MR, Sherratt JA (1998) Mathematical modelling of juxtacrine cell signalling. Mathematical Biosciences 153: 125–150.
|
[15] | Sibilia M, Fleischmann A, Behrens A, Stingl L, Carroll J, et al. (2000) The EGF receptor provides an essential survival signal for SOS-dependent skin tumor development. Cell 102: 211–220.
|
[16] | Wearing HJ, Sherratt JA (2000) Keratinocyte growth factor signalling: a mathematical model of dermal-epidermal interaction in epidermal wound healing. Mathematical Biosciences 165: 41–62.
|
[17] | Kansra S, Stoll SW, Johnson JL, Elder JT (2004) Autocrine extracellular signal-regulated kinase (ERK) activation in normal human keratinocytes: Metalloproteinase-mediated release of Amphiregulin triggers signaling from ErbB1 to ERK. Molecular Biology of the Cell 15: 4299–4309.
|
[18] | Gailit J, Clark RAF (1994) Wound repair in the context of extracellular matrix. Current Opinion in Cell Biology 6: 717–725.
|
[19] | Szabowski MN, Shimotoyodome A, Fusenig NE (1999) Keratinocyte growth regulation in fibroblast co-cultures via a double paracrine mechanism. Journal of Cell Science 112: 1843–1853.
|
[20] | Szabowski A, Szabowski NM, Andrecht S, Kolbus A, Kistner MS, et al. (2000) C-Jun and Jun-B antagonistically control cytokine-regulated mesenchymal–epidermal interaction in skin. Cell 103: 745–755.
|
[21] | Werner S, Smola H (2001) Paracrine regulation of keratinocyte proliferation and differentiation. TRENDS in Cell Biology 11: 143–146.
|
[22] | Okazaki M, Yoshimura K, Uchida G, Harii K (2002) Elevated expression of hepatocyte and keratinocyte growth factor in cultured buccal-mucosa-derived fibroblasts compared with normal-skin-derived fibroblasts. Journal of Dermatological Science 30: 108–115.
|
[23] | Stark HJ, Willhauck MJ, Miranceab N, Boehnke K, Nord I, et al. (2004) Authentic fibroblast matrix in dermal equivalents normalises epidermal histogenesis and dermoepidermal junction in organotypic co-culture. Eur. J. Cell Biol 83: 631–645.
|
[24] | Harrison CA, Dalley AJ, MacNeil S (2005) A simple in vitro model for investigating epithelial/mesenchymal interaction: keratinocyte inhibition of fibroblast proliferation and fibronectin synthesis. Wound Rep Reg 13: 543–550.
|
[25] | Chang CC, Kuo YF, Chiu HC, Lee JL, Wong TW, et al. (1995) Hydration, not silicone, modulates the effects of keratinocytes on fibroblasts. Journal of Surgical Research 59: 705–711.
|
[26] | Dai NT, Williamson MR, Khammo N, Adams EF, Coombes AGA (2004) Composite cell support membranes based on collagen and polycaprolactone for tissue engineering of skin. Biomaterials 25: 4263–4271.
|
[27] | Kolettas E, Skoufos I, Kontargiris E, Markopoulou S, Tzavaras T, et al. (2006) Bcl-2 but not clusterin/apolipoprotein J protected human diploid fibroblasts and immortalized keratinocytes from ceramide-induced apoptosis: Role of p53 in the ceramide response. Archives of Biochemistry and Biophysics 445: 184–195.
|
[28] | Goulet F, Poitras A, Rouabhia M, Cusson D, Germain L, et al. (1996) Stimulation of human keratinocyte proliferation through growth factor exchanges with dermal fibroblasts in vitro. Burns 22: 107–112.
|
[29] | Uchi H, Terao H, Koga T, Furue M (2000) Cytokines and chemokines in the epidermis. Journal of Dermatological Science 24S: S29–S38.
|
[30] | Witte RP, Kao WJ (2005) Keratinocyte-fibroblast paracrine interaction: the effects of substrate and culture condition. Biomaterials 26: 3673–3682.
|
[31] | Blomme EAG, Sugimoto Y, Lin YC, Capen CC, Rosol TJ (1999) Parathyroid hormone-related protein is a positive regulator of keratinocyte growth factor expression by normal dermal fibroblasts. Molecular and Cellular Endocrinology 152: 189–197.
|
[32] | Yamaguchi Y, Hearing VJ, Itami S, Yoshikawa K, Katayama I (2005) Mesenchymal-epithelial interactions in the skin: aiming for site-specific tissue regeneration. Journal of Dermatological Science 40: 1–9.
|
[33] | Bowers W, Blaha M, Alkhyyat A, Sankovich J, Kohl J, et al. (1999) Artificial human skin: cytokine, prostaglandin, Hsp 70 and histological responses to heat exposure. Journal of Dermatological Science 20: 172–182.
|
[34] | Bhora FY, Dunkin BJ, Batzri S, Aly HM, Bass BL, et al. (1995) Effect of growth factors on cell proliferation and epithelialization in human skin. Journal of Surgical Research 59: 236–244.
|
[35] | Rubin JS, Bottaro DP, Chedid M, Miki T, Ron D, et al. (1995) Keratinocyte growth factor. Cell Biology International 19: 399–411.
|
[36] | Sabine W (1998) Keratinocyte growth factor: a unique player in epithelial repair processes. Cytokine & Growth Factor Reviews 9: 153–165.
|
[37] | Keller U, Krampert M, Kumin A, Braun S, Werner S (2004) Keratinocyte growth factor: effects on keratinocytes and mechanisms of action. Eur. J. Cell Biol 83: 607–612.
|
[38] | Kopp J, Wang GY, Kulmburg P, Schultze-Mosgau S, Huan JN, et al. (2004) Accelerated wound healing by in vivo application of keratinocytes over expressing KGF. Molecular Therapy 10: 86–96.
|
[39] | Hubner G, Werner S (1996) Serum growth factors and proinflammatory cytokines are potent inducers of activin expression in cultured fibroblasts and keratinocytes. Experimental Cell Research 228: 106–113.
|
[40] | Mishra L, Derynck R, Mishra B (2005) Transforming growth factor-β signaling in stem cells and cancer. Science 310: 68–71.
|
[41] | Tagashira S, Harada H, Katsumata T, Itoh N, Nakatsuka M (1997) Cloning of mouse FGF10 and up-regulation of its gene expression during wound healing. Gene 197: 399–404.
|
[42] | Beyer TA, Werner S, Dickson C, Grose R (2003) Fibroblast growth factor 22 and its potential role during skin development and repair. Experimental Cell Research 287: 228–236.
|
[43] | Sher I, Yeh BK, Mohammadi M, Adir N, Ron D (2003) Structure-based mutational analyses in FGF7 identify new residues involved in specific interaction with FGFR2IIIb. FEBS Letters 552: 150–154.
|
[44] | Dilley TK, Bowden GT, Chen QM (2003) Novel mechanisms of sublethal oxidant toxicity: induction of premature senescence in human fibroblasts confers tumor promoter activity. Experimental Cell Research 290: 38–48.
|
[45] | Bogaerdt AJ, Ghalbzouri AE, Hensbergen PJ, Reijnen L, Verkerk M, et al. (2004) Differential expression of CRABP-II in fibroblasts derived from dermis and subcutaneous fat. Biochemical and Biophysical Research Communications 315: 428–433.
|
[46] | Gorelik JV, Blinova MI, Diakonov IA, Kukhareva LV, Pinaev GP (1995) Role of feeder cells in spreading and cytoskeleton organization of newborn rat keratinocytes. Cell Biology International 19: 59–64.
|
[47] | Dawson RA, Goberdhan NJ, Freedlander E, MacNeil S (1996) Influence of extracellular matrix proteins on human keratinocyte attachment, proliferation and transfer to a dermal wound model. Burns 22: 93–100.
|
[48] | Fleischmajer R, Kuroda K, Utani A, MacDonald ED, Perlish JS, et al. (2000) Differential expression of laminin α chains during proliferative and differentiation stages in a model for skin morphogenesis. Matrix Biology 19: 637–647.
|
[49] | Smola H, Stark HJ, Thiekotter G, Mirancea N, Krieg T, et al. (1998) Dynamics of basement membrane formation by keratinocyte-fibroblast interaction in organotypic skin culture. Experimental Cell Research 239: 399–410.
|
[50] | Suzuki K, Saito J, Yanai R, Yamada N, Chikama T, et al. (2003) Cell–matrix and cell–cell interactions during corneal epithelial wound healing. Progress in Retinal and Eye Research 22: 113–133.
|
[51] | Kim BM, Suzuki S, Nishimura Y, Um SC, Morota K, et al. (1999) Cellular artificial skin substitute by short period simultaneous culture of fibroblasts and keratinocytes. British Journal of Plastic Surgery 52: 573–578.
|
[52] | Zhang LY, Ishikawa O, Takeuchi Y, Yokoyama Y, Miyachi Y (1999) Influences of keratinocyte-fibroblast interaction on the expression of epimorphin by fibroblasts in vitro. Journal of Dermatological Science 20: 191–196.
|
[53] | Waelti ER, Inaebnit SP, Rast HP, Hunziker T, Limat A, et al. (1992) Co-culture of human keratinocytes on post-mitotic human dermal fibroblast feeder cells: Production of large amounts of interleukin 6. J Invest Dermatol 98: 805–808.
|
[54] | Croix BS, Sheehan C, Rak JW, Florenes VA, Slingerland JM, et al. (1998) E-Cadherindependent growth suppression is mediated by the cyclin-dependent kinase inhibitor p27 KIPI. Journal of Cell Biology 142: 557–571.
|
[55] | Orford K, Orford CC, Byers SW (1999) Exogenous expresion of Beta-Catenin regulates contact inhibition, anchorage-independent growth, anoikis and radiation-induced cell cycle arrest. Journal of cell biology 146: 855–867.
|
[56] | Gizelda TB, Wieser R, Bunge RP, Margitich IS, Katz J, et al. (2000) Density dependent regulation of human schwann cell proliferation. Glia 30: 165–177.
|
[57] | Bhatia SN, Balis UJ, Yarmush ML, Toner M (1999) Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. Faseb J 13: 1883–900.
|
[58] | Nelson CM, Chen CS (2002) Cell-cell signaling by direct contact increases cell proliferation via a PI3K-dependent signal. FEBS Letters 514: 238–42.
|
[59] | Scheffrahn I, Singer BB, Sigmundsson K, Lucka L, Obrink B (2005) Control of density-dependent, cell state-specific signal transduction by the cell adhesion molecule CEACAM1, and its influence on cell cycle regulation. Experimental Cell Research 307: 427–435.
|
[60] | Walker JL, Fournier AK, Assoian RK (2005) Regulation of growth factor signaling and cell cycle progression by cell adhesion and adhesion-dependent changes in cellular tension. Cytokine & Growth Factor Reviews 16: 395–405.
|
[61] | Matsuyoshi N, Imamura S (1997) Multiple cadherins are expressed in human fibroblasts. Biochemical and Biophysical Research Communications 235: 355–358.
|
[62] | Casella GTB, Wieser R, Bunge RP, Margitich IS, Katz J, et al. (2000) Density Dependent Regulation of Human Schwann Cell Proliferation. GLIA 30: 165–177.
|
[63] | Sakaguchi M, Miyazaki M, Takaishi M, Sakaguchi Y, Makino E, et al. (2003) S100C/A11 is a key mediator of Ca2+ induced growth inhibition of human epidermal keratinocytes. The Journal of Cell Biology 163: 825–835.
|
[64] | Sorrell JM, Caplan AI (2004) Fibroblast heterogeneity: more than skin deep. Journal of Cell Science 117: 667–675.
|
[65] | Kanzaki Y, Onoue F, Ishikawa F, Ide T (2002) Telomerase rescues the expression levels of keratinocyte growth factor and insulin-like growth factor-II in senescent human fibroblasts. Experimental Cell Research 279: 321–329.
|
[66] | Osborne CS, Reid WH, Grant MH (1999) Investigation into the biological stability of collagen/chondroitin-6- sulphate gels and their contraction by fibroblasts and keratinocytes: the effect of crosslinking agents and diamines. Biomaterials 20: 283–290.
|
[67] | Mirastschijski U, Haaksma CJ, Tomasek JJ, Agren MS (2004) Matrix metalloproteinase inhibitor GM 6001 attenuates keratinocyte migration, contraction and mofibroblast formation in skin wounds. Experimental Cell Research 299: 465–475.
|
[68] | Roguet R, Schaefer H (1997) Overview of in vitro cell culture technologies and pharmaco-toxicological applications. Toxicology in Vitro 11: 591–599.
|
[69] | Higham MC, Dawson R, Szabo M, Short R, Haddow DB, et al. (2003) Development of a stable chemically defined surface for the culture of human keratinocytes under serum-free conditions for clinical use. Tissue Engineering 9: 915–930.
|
[70] | Absher M, Sylwester D (1981) Effects of silica on human lung fibroblasts: Survival data analysis of time-lapse cinematography data. Environmental Research 26: 438–452.
|
[71] | Macieira-Coelho A, Azzarone B (1982) Aging of human fibroblasts is a succession of subtle changes in the cell cycle and has a final short stage with abrupt events. Experimental Cell Research 141: 325–332.
|
[72] | Takeuchi F, Hanaoka F, Goto M, Yamada MA, Miyamoto T (1982) Prolongation of S phase and whole cell cycle in Werner's syndrome fibroblasts. Experimental Gerontology 17: 473–480.
|
[73] | Tepper CG, Seldin MF, Mudryj M (2000) Fas-mediated apoptosis of proliferating, transiently growth-arrested, and senescent normal human fibroblasts. Experimental Cell Research 260: 9–19.
|
[74] | Adams JC, Watt FM (1990) Changes in keratinocyte adhe sion during terminal differentiation: Reduction in fibronectin binding precedes alpha 5 beta 1 integrin loss from the cell surface. Cell 63: 425–435.
|
[75] | Ashkenas J, Muschler J, Bissell MJ (1996) The Extracellular Matrix in Epithelial Biology: Shared Molecules and Common Themes in Distant Phyla. Developmental Biology 180: 433–444.
|
[76] | Assoian RK (1997) Anchorage-dependent cell cycle progression. J. Cell Biol. 136: 1–4.
|
[77] | Santini MT, Rainaldi G, Indovina PL (2000) Apoptosis, cell adhesion and extracellular matrix in the three-dimensional growth of multicellular tumor spheroids. Crit. Rev. Oncol. Hematol 36: 75–87.
|
[78] | Grossmann J, Walther K, Artinger M, Kiessling S, Scholmerich J (2001) Apoptotic signaling during initiation of detachment-induced apoptosis (“Anoikis”) of primary human intestinal epithelial cells. Cell Growth & Differentiation 12: 147–155.
|
[79] | Drasdo D, Hohme S (2005) A single-cell-based model of tumor growth in vitro: monolayers and spheroids. Phys. Biol 2: 133–147.
|
[80] | Jensen UB, Lowell S, Watt FM (1999) The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: a new view based on whole-mount labelling and lineage analysis. Development 126: 2409–2418.
|
[81] | Meineke FA, Potten CS, Loeffler M (2001) Cell migration and organization in the intestinal crypt using a lattice-free model. Cell Prolif 34: 253–266.
|
[82] | Morel D, Marcelpoil R, Brugal G (2001) A proliferation control network model: the simulation of two-dimensional epithelial homeostasis. Acta Biotheoretica 49: 219–234.
|
[83] | Ponciano JM, Vandecasteele FPJ, Hess TF, Forney LJ, Crawford RL, et al. (2005) Use of stochastic models to assess the effect of environmental factors on microbial growth. Applied and Environmental Microbiology 71: 2355–2364.
|
[84] | Grabe N, Neuber K (2005) A multicellular systems biology model predicts epidermal morphology, kinetics and Ca 2+ flow. Bioinformatics 21: 3541–3547.
|
[85] | Sun T, Norton D, Ryan A, MacNeil S, Haycock J (2007b) Making fibroblasts and keratinocytes walk the plank: investigation of cell scaffold interactions using a novel 3D cell culture system. Journal of Materials Science : MIM 18: 321–328.
|