全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2008 

Phase Locking Induces Scale-Free Topologies in Networks of Coupled Oscillators

DOI: 10.1371/journal.pone.0002644

Full-Text   Cite this paper   Add to My Lib

Abstract:

An initial unsynchronized ensemble of networking phase oscillators is further subjected to a growing process where a set of forcing oscillators, each one of them following the dynamics of a frequency pacemaker, are added to the pristine graph. Linking rules based on dynamical criteria are followed in the attachment process to force phase locking of the network with the external pacemaker. We show that the eventual locking occurs in correspondence to the arousal of a scale-free degree distribution in the original graph.

References

[1]  Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74: 47–97.
[2]  Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45: 167–256.
[3]  Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-U (2006) Complex networks: structure and dynamics. Phys Rep 424: 175–308.
[4]  Barabási AL, Albert R (1999) Emergence of Scaling in Random Networks. Science 286: 509–512.
[5]  Motter AE, Zhou C, Kurths J (2005) Network synchronization, diffusion, and the paradox of heterogeneity. Phys Rev E 71: 016116(9).
[6]  Chavez M, Hwang H-U, Amann A, Hentschel HE, Boccaletti S (2005) Synchronization is Enhanced in Weighted Complex Networks. Phys Rev Lett 94: 218701(4).
[7]  Hwang D-U, Chavez M, Amann A, Boccaletti S (2005) Synchronization in Complex Networks with Age Ordering. Phys Rev Lett 94: 138701(4).
[8]  Yin C-Y, Wang W-X, Chen G, Wang B-H (2006) Decoupling process for better synchronizability on scale-free networks. Phys Rev E 74: 047102(4).
[9]  Belykh V, Belykh VN, Hasler M (2004) Blinking model and synchronization in small-world networks with a time-varying coupling. Physica D 195: 188–206.
[10]  Stilwell DJ, Bollt EM, Roberson DG (2006) Sufficient Conditions for Fast Switching Synchronization in Time-Varying Network Topologies. SIAM J Appl Dyn Syst 5: 140.
[11]  Boccaletti S, Hwang D-U, Chavez M, Amann A, Kurths J, Pecora LM (2006) Synchronization in dynamical networks: Evolution along commutative graphs. Phys Rev E 74: 016102(5).
[12]  Ebel H, Bornholdt S (2002) Evolutionary games and the emergence of complex networks. Eprint cond-mat/0211666.
[13]  Zimmermann MG, Eguíluz VM, San Miguel M (2004) Coevolution of dynamical states and interactions in dynamic networks. Phys Rev E 69: 065102(4).
[14]  Kuramoto Y (1984) Chemical Oscillations, Waves, and Turbulence. Berlin: Springer.
[15]  Strogatz SH (2000) From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143: 1–20.
[16]  Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393: 440.
[17]  Leyva I, Sendi?a–Nadal I, Buldú JM, Boccaletti S in preparation.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133