全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2008 

Virulent Synergistic Effect between Enterococcus faecalis and Escherichia coli Assayed by Using the Caenorhabditis elegans Model

DOI: 10.1371/journal.pone.0003370

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background The role of enterococci in the pathogenesis of polymicrobial infections is still debated. The purpose of this study was to evaluate the effect of virulent enterococci in the presence or absence of Escherichia coli strains in the in vivo Caenorhabditis elegans model. Principal Findings This study demonstrated that there was a synergistic effect on virulence when an association of enterococci and E. coli (LT50 = 1.6 days±0.1 according to the tested strains and death of nematodes in 4 days±0.5) was tested in comparison with enterococci alone (LT50 = 4.6 days±0.1 and death in 10.4 days±0.6) or E. coli alone (LT50 = 2.1±0.9 and deaths 6.6±0.6) (p<0.001). In addition, there was a relation between the virulence of E. faecalis strains alone and the virulence potential of the association with E. coli strains. Finally, in the presence of avirulent E. coli strains, enterococci have no effect (LT50 = 4.3±0.5 and deaths in 10.8±0.8), independently of the level of their own virulence, demonstrating that the ‘enterococci effect’ only occurred in the presence of virulent E. coli strains. Conclusion This study allows a better understanding of a bacterial cooperation. Moreover, it could help to optimize the antibiotic regimen during polymicrobial infections.

References

[1]  Dupont H, Vael C, Muller-Serieys C, Chosidow D, Mantz J, et al. (2007) Prospective evaluation of virulence factors of enterococci isolated from patients with peritonitis: impact on outcome. Diagn Microbiol Infect Dis 60: 247–253.
[2]  Murray BE (1990) The life and times of the enterococcus. Clin Microbiol Rev 3: 46–65.
[3]  Nichols RL, Muzik AC (1992) Enterococcal infections in surgical patients: the mystery continues. Clin Infect Dis 15: 72–76.
[4]  Dupont H, Montravers P, Mohler J, Carbon C (1998) Disparate findings on the role of virulence factors of Enterococcus faecalis in mouse and rat models of peritonitis. Infect Immun 66: 2570–2575.
[5]  Montravers P, Andremont A, Massias L, Carbon C (1994) Investigation of the potential role of Enterococcus faecalis in the pathophysiology of experimental peritonitis. J Infect Dis 169: 821–830.
[6]  Montravers P, Mohler J, Saint Julien L, Carbon C (1997) Evidence of the proinflammatory role of Enterococcus faecalis in polymicrobial peritonitis in rats. Infect Immun 65: 144–149.
[7]  Jansen WT, Bolm M, Balling R, Chhatwal GS, Schnabel R (2002) Hydrogen peroxide-mediated killing of Caenorhabditis elegans by Streptococcus pyogenes. Infect Immun 70: 5202–5207.
[8]  Kothe M, Antl M, Huber B, Stoecker K, Ebrecht D, et al. (2003) Killing of Caenorhabditis elegans by Burkholderia cepacia is controlled by the cep quorum-sensing system. Cell Microbiol 5: 343–351.
[9]  Lavigne JP, Blanc-Potard AB, Bourg G, Moreau J, Chanal C, et al. (2006) Virulence genotype and nematode-killing properties of extra-intestinal Escherichia coli producing CTX-M beta-lactamases. Clin Microbiol Infect 12: 1199–1206.
[10]  Schulenburg H, Ewbank JJ (2004) Diversity and specificity in the interaction between Caenorhabditis elegans and the pathogen Serratia marcescens. BMC Evol Biol 4: 49.
[11]  Sifri CD, Begun J, Ausubel FM, Calderwood SB (2003) Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis. Infect Immun 71: 2208–2217.
[12]  Tan MW, Ausubel FM (2000) Caenorhabditis elegans: a model genetic host to study Pseudomonas aeruginosa pathogenesis. Curr Opin Microbiol 3: 29–34.
[13]  Tenor JL, McCormick BA, Ausubel FM, Aballay A (2004) Caenorhabditis elegans-based screen identifies Salmonella virulence factors required for conserved host-pathogen interactions. Curr Biol 14: 1018–1024.
[14]  Garsin DA, Sifri CD, Mylonakis E, Qin X, Singh KV, et al. (2001) A simple model host for identifying Gram-positive virulence factors. Proc Natl Acad Sci USA 98: 10892–10897.
[15]  Maadani A, Fox KA, Mylonakis E, Garsin DA (2007) Enterococcus faecalis mutations affecting virulence in the Caenorhabditis elegans model host. Infect Immun 75: 2634–2637.
[16]  Blot S, De Waele JJ (2005) Critical issues in the clinical management of complicated intra-abdominal infections. Drugs 65: 1611–1620.
[17]  Chatterjee I, Iredell JR, Woods M, Lipman J (2007) The implications of enterococci for the intensive care unit. Crit Care Resusc 9: 69–75.
[18]  Dupont H (2007) The empiric treatment of nosocomial intra-abdominal infections. Int J Infect Dis 11: S1–S6.
[19]  Harbarth S, Uckay I (2004) Are there patients with peritonitis who require empiric therapy for enterococcus? Eur J Clin Microbiol Infect Dis 23: 73–77.
[20]  Onderdonk AB, Bartlett JG, Louie T, Sullivan-Seigler N, Gorbach SL (1976) Microbial synergy in experimental intra-abdominal abscess. Infect Immun 13: 22–26.
[21]  Dunny GM, Craig RA, Carron RL, Clewell DB (1979) Plasmid transfer in Streptococcus faecalis: production of multiple sex pheromones by recipients. Plasmid 2: 454–465.
[22]  Vankerckhoven V, Van Autgaerden T, Vael C, Lammens C, Chapelle S, et al. (2004) Development of a multiplex PCR for the detection of asa1, gelE, cylA, esp, and hyl genes in enterococci and survey for virulence determinants among European hospital isolates of Enterococcus faecium. J Clin Microbiol 42: 4473–4479.
[23]  Vergis EN, Shankar N, Chow JW, Hayden MK, Snydman DR, et al. (2002) Association between the presence of enterococcal virulence factors gelatinase, hemolysin, and enterococcal surface protein and mortality among patients with bacteremia due to Enterococcus faecalis. Clin Infect Dis 35: 570–575.
[24]  Franz CM, Muscholl-Silberhorn AB, Yousif NM, Vancanneyt M, Swings J, et al. (2001) Incidence of virulence factors and antibiotic resistance among Enterococci isolated from food. Appl Environ Microbiol 67: 4385–4389.
[25]  Kurz CL, Chauvet S, Andres E, Aurouze M, Vallet I, et al. (2003) Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening. EMBO J 22: 1451–1460.
[26]  Diard M, Baeriswyl S, Clermont O, Gouriou S, Picard B, et al. (2007) Caenorhabditis elegans as a simple model to study phenotypic and genetic virulence determinants of extraintestinal pathogenic Escherichia coli. Microbes Infect 9: 214–223.
[27]  Lavigne JP, Marchandin H, Czarnecki E, Kaye C, Sotto A (2005) Enterococcal bacteremia at N?mes university hospital. Pathol Biol 53: 539–545.
[28]  Neeleman C, Klaassen CH, Klomberg DM, de Valk HA, Mouton JW (2004) Pneumolysin is a key factor in misidentification of macrolide-resistant Streptococcus pneumoniae and is a putative virulence factor of S. mitis and other streptococci. J Clin Microbiol 42: 4355–4357.
[29]  Coque TM, Patterson JE, Steckelberg JM, Murray BE (1995) Incidence of hemolysin, gelatinase, and aggregation substance among enterococci isolated from patients with endocarditis and other infections and from feces of hospitalized and community-based persons. J Infect Dis 171: 1223–1229.
[30]  Creti R, Imperi M, Bertuccini L, Fabretti F, Orefici G, et al. (2004) Survey for virulence determinants among Enterococcus faecalis isolated from different sources. J Med Microbiol 53: 13–20.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133