全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2008 

Human Keratinocytes Are Vanilloid Resistant

DOI: 10.1371/journal.pone.0003419

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Use of capsaicin or resiniferatoxin (RTX) as analgesics is an attractive therapeutic option. RTX opens the cation channel inflammatory pain/vanilloid receptor type 1 (TRPV1) permanently and selectively removes nociceptive neurons by Ca2+-cytotoxicity. Paradoxically, not only nociceptors, but non-neuronal cells, including keratinocytes express full length TRPV1 mRNA, while patient dogs and experimental animals that underwent topical treatment or anatomically targeted molecular surgery have shown neither obvious behavioral, nor pathological side effects. Methods To address this paradox, we assessed the vanilloid sensitivity of the HaCaT human keratinocyte cell line and primary keratinocytes from skin biopsies. Results Although both cell types express TRPV1 mRNA, neither responded to vanilloids with Ca2+-cytotoxicity. Only ectopic overproduction of TRPV1 rendered HaCaT cells sensitive to low doses (1–50 nM) of vanilloids. The TRPV1-mediated and non-receptor specific Ca2+-cytotoxity ([RTX]>15 μM) could clearly be distinguished, thus keratinocytes were indeed resistant to vanilloid-induced, TRPV1-mediated Ca2+-entry. Having a wider therapeutic window than capsaicin, RTX was effective in subnanomolar range, but even micromolar concentrations could not kill human keratinocytes. Keratinocytes showed orders of magnitudes lower TRPV1 mRNA level than sensory ganglions, the bona fide therapeutic targets in human pain management. In addition to TRPV1, TRPV1b, a dominant negative splice variant was also noted in keratinocytes. Conclusion TRPV1B expression, together with low TRPV1 expression, may explain the vanilloid paradox: even genuinely TRPV1 mRNA positive cells can be spared with therapeutic (up to micromolar) doses of RTX. This additional safety information might be useful for planning future human clinical trials.

References

[1]  Caterina MJ, Julius D (2001) The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 24: 487–517.
[2]  Jordt SE, Julius D (2002) Molecular basis for species-specific sensitivity to “hot” chili peppers. Cell 108: 421–430.
[3]  Levey DJ, Tewksbury JJ, Cipollini ML, Carlo TA (2006) A field test of the directed deterrence hypothesis in two species of wild chili. Oecologia 150: 61–68.
[4]  Gopinath P, Wan E, Holdcroft A, Facer P, Davis JB, et al. (2005) Increased capsaicin receptor TRPV1 in skin nerve fibres and related vanilloid receptors TRPV3 and TRPV4 in keratinocytes in human breast pain. BMC Womens Health 5: 2.
[5]  Olah Z, Szabo T, Karai L, Hough C, Fields RD, et al. (2001) Ligand-induced dynamic membrane changes and cell deletion conferred by vanilloid receptor 1. J Biol Chem 276: 11021–11030.
[6]  Karai L, Brown DC, Mannes AJ, Connelly ST, Brown J, et al. (2004) Deletion of vanilloid receptor 1-expressing primary afferent neurons for pain control. J Clin Invest 113: 1344–1352.
[7]  Brown DC, Iadarola MJ, Perkowski SZ, Erin H, Shofer F, et al. (2005) Physiologic and antinociceptive effects of intrathecal resiniferatoxin in a canine bone cancer model. Anesthesiology 103: 1052–1059.
[8]  Tender GC, Walbridge S, Olah Z, Karai L, Iadarola M, et al. (2005) Selective ablation of nociceptive neurons for elimination of hyperalgesia and neurogenic inflammation. J Neurosurg 102: 522–525.
[9]  Mezey E, Toth ZE, Cortright DN, Arzubi MK, Krause JE, et al. (2000) Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. Proc Natl Acad Sci U S A 97: 3655–3660.
[10]  Nagy I, Santha P, Jancso G, Urban L (2004) The role of the vanilloid (capsaicin) receptor (TRPV1) in physiology and pathology. Eur J Pharmacol 500: 351–369.
[11]  Szallasi A, Blumberg PM (1999) Vanilloid (Capsaicin) receptors and mechanisms. Pharmacol Rev 51: 159–212.
[12]  Szallasi A (2006) Small molecule vanilloid TRPV1 receptor antagonists approaching drug status: can they live up to the expectations? Naunyn Schmiedebergs Arch Pharmacol 373: 273–286.
[13]  Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, et al. (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288: 306–313.
[14]  Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, et al. (2000) Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405: 183–187.
[15]  Birder LA, Nakamura Y, Kiss S, Nealen ML, Barrick S, et al. (2002) Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nat Neurosci 5: 856–860.
[16]  Szallasi A, Blumberg PM (1989) Resiniferatoxin, a phorbol-related diterpene, acts as an ultrapotent analog of capsaicin, the irritant constituent in red pepper. Neuroscience 30: 515–520.
[17]  Stander S, Luger T, Metze D (2001) Treatment of prurigo nodularis with topical capsaicin. J Am Acad Dermatol 44: 471–478.
[18]  Simpson DM, Brown S, Tobias J (2008) Controlled trial of high-concentration capsaicin patch for treatment of painful HIV neuropathy. Neurology 70: 2305–2313.
[19]  Argoff CE (2003) Targeted topical peripheral analgesics in the management of pain. Curr Pain Headache Rep 7: 34–38.
[20]  Alper BS, Lewis PR (2002) Treatment of postherpetic neuralgia: a systematic review of the literature. J Fam Pract 51: 121–128.
[21]  Southall MD, Li T, Gharibova LS, Pei Y, Nicol GD, et al. (2003) Activation of epidermal vanilloid receptor-1 induces release of proinflammatory mediators in human keratinocytes. J Pharmacol Exp Ther 304: 217–222.
[22]  Denda M, Fuziwara S, Inoue K, Denda S, Akamatsu H, et al. (2001) Immunoreactivity of VR1 on epidermal keratinocyte of human skin. Biochem Biophys Res Commun 285: 1250–1252.
[23]  Inoue K, Koizumi S, Fuziwara S, Denda S, Inoue K, et al. (2002) Functional vanilloid receptors in cultured normal human epidermal keratinocytes. Biochem Biophys Res Commun 291: 124–129.
[24]  Olah Z, Josvay K, Pecze L, Letoha T, Babai N, et al. (2007) Anti-calmodulins and tricyclic adjuvants in pain therapy block the TRPV1 channel. PLoS ONE 2: e545.
[25]  Bodo E, Biro T, Telek A, Czifra G, Griger Z, et al. (2005) A hot new twist to hair biology: involvement of vanilloid receptor-1 (VR1/TRPV1) signaling in human hair growth control. Am J Pathol 166: 985–998.
[26]  Chung MK, Lee H, Mizuno A, Suzuki M, Caterina MJ (2004) TRPV3 and TRPV4 mediate warmth-evoked currents in primary mouse keratinocytes. J Biol Chem 279: 21569–21575.
[27]  Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, et al. (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106: 761–771.
[28]  Paramio JM, Lain S, Segrelles C, Lane EB, Jorcano JL (1998) Differential expression and functionally co-operative roles for the retinoblastoma family of proteins in epidermal differentiation. Oncogene 17: 949–957.
[29]  Olah Z, Karai L, Iadarola MJ (2001) Anandamide activates vanilloid receptor 1 (VR1) at acidic pH in dorsal root ganglia neurons and cells ectopically expressing VR1. J Biol Chem 276: 31163–31170.
[30]  Pivarcsi A, Szell M, Kemeny L, Dobozy A, Bata-Csorgo Z (2001) Serum factors regulate the expression of the proliferation-related genes alpha5 integrin and keratin 1, but not keratin 10, in HaCaT keratinocytes. Arch Dermatol Res 293: 206–213.
[31]  Vos MH, Neelands TR, McDonald HA, Choi W, Kroeger PE, et al. (2006) TRPV1b overexpression negatively regulates TRPV1 responsiveness to capsaicin, heat and low pH in HEK293 cells. J Neurochem 99: 1088–1102.
[32]  Pivarcsi A, Bodai L, Rethi B, Kenderessy-Szabo A, Koreck A, et al. (2003) Expression and function of Toll-like receptors 2 and 4 in human keratinocytes. Int Immunol 15: 721–730.
[33]  Jensen PK, Norgard JO, Knudsen C, Nielsen V, Bolund L (1990) Effects of extra- and intracellular calcium concentration on DNA replication, lateral growth, and differentiation of human epidermal cells in culture. Virchows Arch B Cell Pathol Incl Mol Pathol 59: 17–25.
[34]  Gandarillas A, Watt FM (1997) c-Myc promotes differentiation of human epidermal stem cells. Genes Dev 11: 2869–2882.
[35]  Athanasiou A, Smith PA, Vakilpour S, Kumaran NM, Turner AE, et al. (2007) Vanilloid receptor agonists and antagonists are mitochondrial inhibitors: how vanilloids cause non-vanilloid receptor mediated cell death. Biochem Biophys Res Commun 354: 50–55.
[36]  Witte DG, Cassar SC, Masters JN, Esbenshade T, Hancock AA (2002) Use of a fluorescent imaging plate reader–based calcium assay to assess pharmacological differences between the human and rat vanilloid receptor. J Biomol Screen 7: 466–475.
[37]  Huang SM, Bisogno T, Trevisani M, Al-Hayani A, De Petrocellis L, et al. (2002) An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc Natl Acad Sci U S A 99: 8400–8405.
[38]  Hu-Tsai M, Winter J, Woolf CJ (1992) Regional differences in the distribution of capsaicin-sensitive target-identified adult rat dorsal root ganglion neurons. Neurosci Lett 143: 251–254.
[39]  Winter J, Evison CJ, O'Brien C, Benowitz L, Lindsay RM, et al. (1992) Neurotoxic damage evokes regenerative responses from adult rat sensory neurones. Neurosci Lett 146: 48–52.
[40]  Sathianathan V, Avelino A, Charrua A, Santha P, Matesz K, et al. (2003) Insulin induces cobalt uptake in a subpopulation of rat cultured primary sensory neurons. Eur J Neurosci 18: 2477–2486.
[41]  Singh Tahim A, Santha P, Nagy I (2005) Inflammatory mediators convert anandamide into a potent activator of the vanilloid type 1 transient receptor potential receptor in nociceptive primary sensory neurons. Neuroscience 136: 539–548.
[42]  Bucci FA Jr, Gabriels CF, Krohel GB (1988) Successful treatment of postherpetic neuralgia with capsaicin. Am J Ophthalmol 106: 758–759.
[43]  Watson CP, Evans RJ, Watt VR, Birkett N (1988) Post-herpetic neuralgia: 208 cases. Pain 35: 289–297.
[44]  Lynn B (1990) Capsaicin: actions on nociceptive C-fibres and therapeutic potential. Pain 41: 61–69.
[45]  Winter J, Bevan S, Campbell EA (1995) Capsaicin and pain mechanisms. Br J Anaesth 75: 157–168.
[46]  Numazaki M, Tominaga T, Takeuchi K, Murayama N, Toyooka H, et al. (2003) Structural determinant of TRPV1 desensitization interacts with calmodulin. Proc Natl Acad Sci U S A 100: 8002–8006.
[47]  Bhave G, Zhu W, Wang H, Brasier DJ, Oxford GS, et al. (2002) cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation. Neuron 35: 721–731.
[48]  Macho A, Calzado MA, Munoz-Blanco J, Gomez-Diaz C, Gajate C, et al. (1999) Selective induction of apoptosis by capsaicin in transformed cells: the role of reactive oxygen species and calcium. Cell Death Differ 6: 155–165.
[49]  Kedei N, Szabo T, Lile JD, Treanor JJ, Olah Z, et al. (2001) Analysis of the native quaternary structure of vanilloid receptor 1. J Biol Chem 276: 28613–28619.
[50]  Liapi A, Wood JN (2005) Extensive co-localization and heteromultimer formation of the vanilloid receptor-like protein TRPV2 and the capsaicin receptor TRPV1 in the adult rat cerebral cortex. Eur J Neurosci 22: 825–834.
[51]  Alessandri-Haber N, Dina OA, Yeh JJ, Parada CA, Reichling DB, et al. (2004) Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat. J Neurosci 24: 4444–4452.
[52]  Guler AD, Lee H, Iida T, Shimizu I, Tominaga M, et al. (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22: 6408–6414.
[53]  Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, et al. (2002) A TRP channel that senses cold stimuli and menthol. Cell 108: 705–715.
[54]  Hellwig N, Albrecht N, Harteneck C, Schultz G, Schaefer M (2005) Homo- and heteromeric assembly of TRPV channel subunits. J Cell Sci 118: 917–928.
[55]  Pareek TK, Keller J, Kesavapany S, Agarwal N, Kuner R, et al. (2007) Cyclin-dependent kinase 5 modulates nociceptive signaling through direct phosphorylation of transient receptor potential vanilloid 1. Proc Natl Acad Sci U S A 104: 660–665.
[56]  Basu S, Srivastava P (2005) Immunological role of neuronal receptor vanilloid receptor 1 expressed on dendritic cells. Proc Natl Acad Sci U S A 102: 5120–5125.
[57]  O'Connell PJ, Pingle SC, Ahern GP (2005) Dendritic cells do not transduce inflammatory stimuli via the capsaicin receptor TRPV1. FEBS Lett 579: 5135–5139.
[58]  Guo A, Vulchanova L, Wang J, Li X, Elde R (1999) Immunocytochemical localization of the vanilloid receptor 1 (VR1): relationship to neuropeptides, the P2X3 purinoceptor and IB4 binding sites. Eur J Neurosci 11: 946–958.
[59]  Facer P, Casula MA, Smith GD, Benham CD, Chessell IP, et al. (2007) Differential expression of the capsaicin receptor TRPV1 and related novel receptors TRPV3, TRPV4 and TRPM8 in normal human tissues and changes in traumatic and diabetic neuropathy. BMC Neurol 7: 11.
[60]  Roberts JC, Davis JB, Benham CD (2004) [3H]Resiniferatoxin autoradiography in the CNS of wild-type and TRPV1 null mice defines TRPV1 (VR-1) protein distribution. Brain Res 995: 176–183.
[61]  Toth A, Boczan J, Kedei N, Lizanecz E, Bagi Z, et al. (2005) Expression and distribution of vanilloid receptor 1 (TRPV1) in the adult rat brain. Brain Res Mol Brain Res 135: 162–168.
[62]  Kofalvi A, Oliveira CR, Cunha RA (2006) Lack of evidence for functional TRPV1 vanilloid receptors in rat hippocampal nerve terminals. Neurosci Lett 403: 151–156.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133