全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2009 

A ?Repertoire for Repertoire? Hypothesis: Repertoires of Type Three Effectors are Candidate Determinants of Host Specificity in Xanthomonas

DOI: 10.1371/journal.pone.0006632

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background The genetic basis of host specificity for animal and plant pathogenic bacteria remains poorly understood. For plant pathogenic bacteria, host range is restricted to one or a few host plant species reflecting a tight adaptation to specific hosts. Methodology/Principal Findings Two hypotheses can be formulated to explain host specificity: either it can be explained by the phylogenetic position of the strains, or by the association of virulence genes enabling a pathological convergence of phylogenically distant strains. In this latter hypothesis, host specificity would result from the interaction between repertoires of bacterial virulence genes and repertoires of genes involved in host defences. To challenge these two hypotheses, we selected 132 Xanthomonas axonopodis strains representative of 18 different pathovars which display different host range. First, the phylogenetic position of each strain was determined by sequencing the housekeeping gene rpoD. This study showed that many pathovars of Xanthomonas axonopodis are polyphyletic. Second, we investigated the distribution of 35 type III effector genes (T3Es) in these strains by both PCR and hybridization methods. Indeed, for pathogenic bacteria T3Es were shown to trigger and to subvert host defences. Our study revealed that T3E repertoires comprise core and variable gene suites that likely have distinct roles in pathogenicity and different evolutionary histories. Our results showed a correspondence between composition of T3E repertoires and pathovars of Xanthomonas axonopodis. For polyphyletic pathovars, this suggests that T3E genes might explain a pathological convergence of phylogenetically distant strains. We also identified several DNA rearrangements within T3E genes, some of which correlate with host specificity of strains. Conclusions/Significance These data provide insight into the potential role played by T3E genes for pathogenic bacteria and support a “repertoire for repertoire” hypothesis that may explain host specificity. Our work provides resources for functional and evolutionary studies aiming at understanding host specificity of pathogenic bacteria, functional redundancy between T3Es and the driving forces shaping T3E repertoires.

References

[1]  Moulin-Schouleur M, Répérant M, Laurent S, Brée A, Mignon-Grasteau S, et al. (2007) Extraintestinal pathogenic Escherichia coli strains of avian and human origin: link between phylogenetic relationships and common virulence patterns. J Clin Microbiol 45: 3366–3376.
[2]  Kariyawasam S, Scaccianoce JA, Nolan LK (2007) Common and specific genomic sequences of avian and human extraintestinal pathogenic Escherichia coli as determined by genomic subtractive hybridization. BMC Microbiol 7: 81.
[3]  Ron EZ (2006) Host specificity of septicemic Escherichia coli: human and avian pathogens. Curr Opin Microbiol 9: 28–32.
[4]  Mokady D, Gophna U, Ron EZ (2005) Virulence factors of septicemic Escherichia coli strains. Int J Med Microbiol 295: 455–462.
[5]  Mokady D, Gophna U, Ron EZ (2005) Extensive gene diversity in septicemic Escherichia coli strains. J Clin Microbiol 43: 66–73.
[6]  Dye DW, Bradbury JF, Goto M, Hayward AC, Lelliot RA, et al. (1980) International standards for naming pathovars of phytopathogenic bacteria and a list of pathovar names and pathotype strains. Rev Plant Pathol 59: 153–168.
[7]  Flor HH (1956) The complementary genetic systems in flax and flax rust. Adv Genet 8: 29–54.
[8]  da Silva ACR, Ferro JA, Reinach FC, Farah CS, Furlan LR, et al. (2002) Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417: 459–463.
[9]  Ochiai H, Inoue Y, Takeya M, Sasaki A, Kaku H (2005) Genome sequence of Xanthomonas oryzae pv. oryzae suggests contribution of large numbers of effector genes and insertion sequences to its race diversity. JARQ 39: 275–288.
[10]  Feil H, Feil WS, Chain P, Larimer F, DiBartolo G, et al. (2005) Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proc Natl Acad Sci U S A 102: 11064–11069.
[11]  Grant SR, Fisher EJ, Chang JH, Mole BM, Dangl JL (2006) Subterfuge and manipulation: Type III effector proteins of phytopathogenic bacteria. Annu Rev Microbiol 60: 425–449.
[12]  Guidot A, Prior P, Schoenfeld J, Carrère S, Genin S, et al. (2007) Genomic structure and phylogeny of the plant pathogen Ralstonia solanacearum inferred from gene distribution analysis. J Bacteriol 189: 377–387.
[13]  He YQ, Zhang L, Jiang BL, Zhang ZC, Xu RQ, et al. (2007) Comparative and functional genomics reveals genetic diversity and determinants of host specificity among reference strains and a large collection of Chinese isolates of the phytopathogen Xanthomonas campestris pv. campestris. Genome Biol 8: R218.
[14]  Demuth A, Aharonowitz Y, Bachmann TT, Blum-Oehler G, Buchrieser C, et al. (2008) Pathogenomics: an updated European Research Agenda. Infect Genet Evol 8: 386–393.
[15]  Hayward A (1993) The hosts of Xanthomonas. In: Swings J, Civerolo EL, editors. Xanthomonas. London: Chapman and Hall. pp. 1–18.
[16]  Sarkar SF, Gordon JS, Martin GB, Guttman DS (2006) Comparative genomics of host-specific virulence in Pseudomonas syringae. Genetics 174: 1041–1056.
[17]  Chang JH, Urbach JM, Law TF, Arnold LW, Hu A, et al. (2005) A highthroughput, near-saturating screen for type III effector genes from Pseudomonas syringae. Proc Natl Acad Sci U S A 102: 2549–2554.
[18]  Schechter LM, Vencato M, Jordan KL, Schneider SE, Schneider DJ, et al. (2006) Multiple approaches to a complete inventory of Pseudomonas syringae pv. tomato DC3000 type III secretion system effector proteins. Mol Plant-Microbe Interact 19: 1180–1192.
[19]  Gürlebeck D, Thieme F, Bonas U (2006) Type III effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant. J Plant Physiol 163: 233–255.
[20]  da Cunha L, Sreerekha MV, Mackey D (2007) Defense suppression by virulence effectors of bacterial phytopathogens. Curr Opin Plant Biol 10: 349–357.
[21]  Jones JD, Dangl JL (2006) The plant immune system. Nature 444: 323–329.
[22]  Castaneda A, Reddy JD, El-Yacoubi B, Gabriel DW (2005) Mutagenesis of all eight avr genes in Xanthomonas campestris pv. campestris had no detected effect on pathogenicity but one avr gene affected race specificity. Mol Plant Microbe Interact 18: 1306–1317.
[23]  Triplett LR, Zhao Y, Sundin GW (2006) Genetic differences between blight-causing Erwinia species with differing host specificities, identified by suppression subtractive hybridization. Appl Environ Microbiol 72: 7359–7364.
[24]  Alavi SM, Sanjari S, Durand F, Brin C, Manceau C, et al. (2008) Assessment of the genetic diversity of Xanthomonas axonopodis pv. phaseoli and Xanthomonas fuscans subsp. fuscans as a basis to identify putative pathogenicity genes and a type III secretion system of the SPI-1 family by multiple suppression subtractive hybridizations. Appl Environ Microbiol 74: 3295–3301.
[25]  Badel JL, Shimizu R, Oh H-S, Collmer A (2006) A Pseudomonas syringae pv. tomato avrE1/hopM1 mutant is severely reduced in growth and lesion formation in tomato. Mol Plant Microbe Interact 19: 99–111.
[26]  Kvitko BH, Park DH, Velasquez AC, Wei C-F, Russell AB, et al. (2009) Deletions in the repertoire of Pseudomonas syringae pv. tomato DC3000 type III secretion effector genes reveal functional overlap among effectors. PLoS Pathog 5(4): e1000388. doi:10.1371/journal.ppat.1000388.
[27]  Badel JL, Nomura K, Bandyopadhyay S, Shimizu R, Collmer A, et al. (2003) Pseudomonas syringae pv. tomato DC3000 HopPtoM (CEL ORF3) is important for lesion formation but not growth in tomato and is secreted and translocated by the Hrp type III secretion system in a chaperone-dependent manner. Mol Microbiol 49: 1239–1251.
[28]  Lopez-Solanilla E, Bronstein PA, Schneider AR, Collmer A (2004) HopPtoN is a Pseudomonas syringae Hrp (type III secretion system) cysteine protease effector that suppresses pathogen-induced necrosis associated with both compatible and incompatible plant interactions. Mol Microbiol 54: 353–365.
[29]  Reboutier D, Frankart C, Briand J, Biligui B, Rona JP, et al. (2007) Antagonistic action of harpin proteins: HrpWea from Erwinia amylovora suppresses HrpNea-induced cell death in Arabidopsis thaliana. J Cell Sci 120: 3271–3278.
[30]  Liao AP, Petrof EO, Kuppireddi S, Zhao Y, Xia Y, et al. (2008) Salmonella type III effector AvrA stabilizes cell tight junctions to inhibit inflammation in intestinal epithelial cells. PLoS ONE 3: e2369.
[31]  Zhao B, Ardales EY, Raymundo A, Bai J, Trick HN, et al. (2004) The avrRxo1 gene from the rice pathogen Xanthomonas oryzae pv. oryzicola confers a nonhost defense reaction on maize with resistance gene Rxo1. Mol Plant Microbe Interact 17: 771–779.
[32]  Vauterin L, Hoste B, Kersters K, Swings J (1995) Reclassification of Xanthomonas. International Journal of Systematic Bacteriology 45: 472–489.
[33]  Vauterin L, Rademaker J, Swings J (2000) Synopsis on the taxonomy of the genus Xanthomonas. Phytopathology 90: 677–682.
[34]  Rademaker JLW, Hoste B, Louws FJ, Kersters K, Swings J, et al. (2000) Comparison of AFLP and rep-PCR genomic fingerprinting with DNA-DNA homology studies: Xanthomonas as a model system. Int J Syst Appl Microbiol 50: 665–677.
[35]  Rademaker JLW, Louws FJ, Schultz MH, Rossbach U, Vauterin L, et al. (2005) A comprehensive species to strain taxonomic framework for Xanthomonas. Phytopathology 95: 1098–1111.
[36]  Fargier E (2007) L'étude de la pathologie de Xanthomonas campestris et de la structure génétique de ses pathovars a permis l'amélioration de la détection du pathogène dans les semences de Brassicacées. PhD thesis, University of Angers.
[37]  Young JM, Park DC, Shearman HM, Fargier E (2008) A multilocus sequence analysis of the genus Xanthomonas. Syst Appl Microbiol 31: 366–377.
[38]  Lu H, Patil P, Van Sluys M-A, White FF, Ryan RP, et al. (2008) Acquisition and evolution of plant pathogenesis-associated gene clusters and candidate determinants of tissue-specificity in Xanthomonas. PLoS ONE 3: e3828.
[39]  Meyer DF, Bogdanove AJ (2009) Genomics-driven advances in Xanthomonas biology. In: Jackson , editor. Plant Pathogenic Bacteria: Genomics and Molecular Biology. Norfolk, UK: Caister Academic Press. pp. 147–161.
[40]  Ah-You N, Gagnevin L, Chiroleu F, Jouen E, Rodrigues Neto J, et al. (2007) Pathological variations within Xanthomonas campestris pv. mangiferaeindicae support its separation into three distinct pathovars that can be distinguished by amplified fragment length polymorphism. Phytopathology 97: 1568–1577.
[41]  Brunings AM, Gabriel DW (2003) Xanthomonas citri: breaking the surface. Mol Plant Pathol 4: 141–157.
[42]  Roumagnac P, Gagnevin L, Gardan L, Sutra L, Manceau C, et al. (2004) Polyphasic characterization of xanthomonads isolated from onion, garlic and Welsh onion (Allium spp.) and their relatedness to different Xanthomonas species. Int J Syst Evol Microbiol 54: 15–24.
[43]  Jones JB, Stall RE, Bouzar H (1998) Diversity among xanthomonads pathogenic on pepper and tomato. Annu Rev Phytopathol 36: 41–58.
[44]  Berthier Y, Verdier V, Guesdon JL, Chevrier D, Denis JB, et al. (1993) Characterization of Xanthomonas campestris Pathovars by rRNA Gene Restriction Patterns. Appl Environ Microbiol 59: 851–859.
[45]  Gonzalez C, Restrepo S, Tohme J, Verdier V (2002) Characterization of pathogenic and nonpathogenic strains of Xa nthomonas axonopodis pv. manihotis by PCR-based DNA fingerprinting techniques. FEMS Microbiol Lett 215: 23–31.
[46]  Mkandawire ABC, Mabagala RB, Guzman P, Gepts P, Gilbertson RL (2004) Genetic diversity and pathogenic variation of common blight bacteria (Xanthomonas campestris pv. phaseoli and X. campestris pv. phaseoli var. fuscans) suggests pathogen coevolution with the common bean. Phytopathology 94: 593–603.
[47]  Khatri-Chhetri GB, Wydra K, Rudolph K (2003) Metabolic diversity of Xanthomonas axonopodis pv. vignicola, casual agent of cowpea bacterial blight and pustule. Eur J Plant Pathol 109: 851–860.
[48]  Restrepo S, Vélez CM, Verdier V (2000) Measuring the genetic diversity of Xanthomonas axonopodis pv. manihotis within different fields in Colombia. Phytopathology 90: 683–690.
[49]  Gent DH, Al-Saadi A, Gabriel DW, Louws FJ, Ishimaru CA, et al. (2005) Pathogenic and genetic relatedness among Xanthomonas axonopodis pv. allii and other pathovars of X. axonopodis. Phytopathology 95: 918–925.
[50]  Robène-Soustrade I, Laurent P, Gagnevin L, Jouen E, Pruvost O (2006) Specific detection of Xanthomonas axonopodis pv. dieffenbachiae in anthurium (Anthurium andreanum) tissues by nested PCR. Appl Environ Microbiol 72: 1072–1078.
[51]  De Feyter R, Gabriel DW (1991) At least six avirulence genes are clustered on a 90-kilobase plasmid in Xanthomonas campestris pv. malvacearum. Mol Plant-Microbe Interact 4: 423–432.
[52]  Zomorodian A, Rudolph K (1993) Xanthomonas campestris pv. malvacearum: cause of bacterial blight of cotton. In: Swings JG, Civerolo EL, editors. Xanthomonas. London: Chapman & Hall. pp. 25–30.
[53]  Jacques MA, Josi K, Darrasse A, Samson R (2005) Xanthomonas axonopodis pv. phaseoli var. fuscans is aggregated in stable biofilm population sizes in the phyllosphere of field-grown beans. Appl Environ Microbiol 71: 2008–2015.
[54]  Alavi SM, Poussier S, Manceau C (2007) Characterization of ISXax1, a novel insertion sequence restricted to Xanthomonas axonopodis pv. phaseoli (variants fuscans and non-fuscans) and Xanthomonas axonopodis pv. vesicatoria. Appl Environ Microbiol 73: 1678–1682.
[55]  Darsonval A, Darrasse A, Meyer D, Demarty M, Durand K, et al. (2008) The type III secretion system of Xanthomonas fuscans subsp. fuscans is involved in the phyllosphere colonization process and in transmission to seeds of susceptible beans. Appl Environ Microbiol 74: 2669–2678.
[56]  Darsonval A, Darrasse A, Durand K, Bureau C, Cesbron S, et al. (2009) Adhesion and fitness in the bean phyllosphere and transmission to seeds of Xanthomonas fuscans subsp. fuscans. Mol Plant-Microbe Interact 22: 747–757.
[57]  Xu RQ, Blanvillain S, Feng JX, Jiang BL, Li XZ, et al. (2008) AvrAC(Xcc8004), a type III effector with a leucine-rich repeat domain from Xanthomonas campestris pathovar campestris confers avirulence in vascular tissues of Arabidopsis thaliana ecotype Col-0. J Bacteriol 190: 343–355.
[58]  Maiden MCJ, Bygraves JA, Feil E, Morelli G, Russell JE, et al. (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 95: 3140–3145.
[59]  Enright MC, Spratt BG (1999) Multilocus sequence typing. Trends Microbiol 7: 482–487.
[60]  Urwin R, Maiden MCJ (2003) Multi-locus sequence typing: a tool for global epidemiology. Trends Microbiol 11: 479–487.
[61]  Sarkar SF, Guttman DS (2004) Evolution of the core genome of Pseudomonas syringae, a highly clonal, endemic plant pathogen. Appl Environ Microbiol 70: 1999–2012.
[62]  Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817–818.
[63]  Cornelis GR (2006) The type III secretion injectisome. Nat Rev Microbiol 4: 811–825.
[64]  Thieme F, Koebnik R, Bekel T, Berger C, Boch J, et al. (2005) Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence. J Bacteriol 187: 7254–7266.
[65]  Lee BM, Park YJ, Park DS, Kang HW, Kim JG, et al. (2005) The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Res 33: 577–586.
[66]  Qian W, Jia Y, Ren SX, He YQ, Feng JX, et al. (2005) Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Res 15: 757–767.
[67]  Hotson A, Mudgett MB (2004) Cysteine proteases in phytopathogenic bacteria: Identification of plant targets and activation of innate immunity. Curr Opin Plant Biol 7: 384–390.
[68]  Kay S, Bonas U (2009) How Xanthomonas type III effectors manipulate the host plant. Curr Opin Microbiol 12: 37–43.
[69]  Guttman DS, Vinatzer BA, Sarkar SF, Ranall MV, Kettler G, et al. (2002) A functional screen for the type III (Hrp) secretome of the plant pathogen Pseudomonas syringae. Science 295: 1722–1726.
[70]  Rohmer L, Guttman DS, Dangl JL (2004) Diverse evolutionary mechanisms shape the type III effector virulence factor repertoire in the plant pathogen Pseudomonas syringae. Genetics 167: 1341–1360.
[71]  Stavrinides J, McCann HC, Guttman DS (2008) Host-pathogen interplay and the evolution of bacterial effectors. Cell Microbiol 10: 285–292.
[72]  Kearney B, Staskawicz BJ (1990) Widespread distribution and fitness contribution of Xanthomonas campestris avirulence gene avrBs2. Nature 346: 385–386.
[73]  Duan YP, Casta?eda A, Zhao G, Erdos G, Gabriel DW (1999) Expression of a single, host-specific, bacterial pathogenicity gene in plant cells elicits division, enlargement, and cell death. Mol Plant Microbe Interact 12: 556–560.
[74]  Roden JA, Belt B, Ross JB, Tachibana T, Vargas J, et al. (2004) A genetic screen to isolate type III effectors translocated into pepper cells during Xanthomonas infection. Proc Natl Acad Sci USA 101: 16624–16629.
[75]  Yang B, White FF (2004) Diverse members of the AvrBs3/PthA family of type III effectors are major virulence determinants in bacterial blight disease of rice. Mol Plant Microbe Interact 17: 1192–1200.
[76]  Metz M, Dahlbeck D, Morales CQ, Al Sady B, Clark ET, et al. (2005) The conserved Xanthomonas campestris pv. vesicatoria effector protein XopX is a virulence factor and suppresses host defense in Nicotiana benthamiana. Plant J 41: 801–814.
[77]  Jiang BL, He YQ, Cen WJ, Wei HY, Jiang GF, et al. (2008) The type III secretion effector XopXccN of Xanthomonas campestris pv. campestris is required for full virulence. Res Microbiol 159: 216–220.
[78]  No?l L, Thieme F, G?bler J, Büttner D, Bonas U (2003) XopC and XopJ, two novel type III effector proteins from Xanthomonas campestris pv. vesicatoria. J Bacteriol 185: 7092–7102.
[79]  Alfano JR, Charkowski AO, Deng WL, Badel JL, Petnicki-Ocwieja T, et al. (2000) The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc Natl Acad Sci USA 97: 4856–4861.
[80]  Lorang JM, Shen H, Kobayashi D, Cooksey D, Keen NT (1994) avrA and avrE in Pseudomonas syringae pv. tomato PT23 play a role in virulence on tomato plants. Mol Plant Microbe Interact 7: 508–515.
[81]  Gaudriault S, Malandrin L, Paulin JP, Barny MA (1997) DspA, an essential pathogenicity factor of Erwinia amylovora showing homology with AvrE of Pseudomonas syringae, is secreted via the Hrp secretion pathway in a DspB-dependent way. Mol Microbiol 26: 1057–1069.
[82]  Bogdanove AJ, Bauer DW, Beer SV (1998) Erwinia amylovora secretes DspE, a pathogenicity factor and functional AvrE homolog, through the hrp (type III secretion) pathway. J Bacteriol 180: 2244–2247.
[83]  Lima W, Van Sluys MA, Menck CF (2005) Non-gamma Proteobacteria gene islands contribute to the Xanthomonas genome. Omics 9: 160–172.
[84]  Comas I, Moya A, Azad RK, Lawrence JG, Gonzalez-Candelas F (2006) The evolutionary origin of Xanthomonadales genomes and the nature of the horizontal gene transfer process. Mol Biol Evol 23: 2049–2057.
[85]  Gillings MR, Holley MP, Stokes HW, Holmes AJ (2005) Integrons in Xanthomonas: A source of species genome diversity. Proc Natl Acad Sci USA 102: 4419–4424.
[86]  Lerat E, Daubin V, Ochman H, Moran NA (2005) Evolutionary origins of genomic repertoires in bacteria. PLoS Biol 3: e130.
[87]  Hacker J, Kaper J (2000) Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54: 641–679.
[88]  Leach JE, Vera Cruz CM, Bai J, Leung H (2001) Pathogen fitness penalty as a predictor of durability of disease resistance genes. Annu Rev Phytopathol 39: 187–224.
[89]  Maddison WP, Maddison DR (2009) Mesquite: a modular system for evolutionary analysis. Version 2.6 .
[90]  Vinatzer BA, Teitzel GM, Lee MW, Jelenska J, Hotton S, et al. (2006) The type III effector repertoire of Pseudomonas syringae pv. syringae B728a and its role in survival and disease on host and non-host plants. Mol Microbiol 62: 26–44.
[91]  Ham JH, Kim MG, Lee SY, Mackey D (2007) Layered basal defenses underlie non-host resistance of Arabidopsis to Pseudomonas syringae pv. phaseolicola. Plant J 51: 604–616.
[92]  Nurnberger T, Lipka V (2005) Non-host resistance in plants: new insights into an old phenomenon. Mol Plant Pathol 6: 335–345.
[93]  Lindeberg M, Cartinhour S, Myers CR, Schechter LM, Schneider DJ, et al. (2006) Closing the circle on the discovery of genes encoding Hrp regulon members and type III secretion system effectors in the genomes of three model Pseudomonas syringae strains. Mol Plant Microbe Interact 19: 1151–1158.
[94]  Yao J, Allen C (2006) Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum. J Bacteriol 188: 3697–3708.
[95]  Alfano JR, Collmer A (2004) Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu Rev Phytopathol 42: 385–414.
[96]  Jamir Y, Guo M, Oh H-S, Petnicki-Ocwieja T, Chen S, et al. (2004) Identification of Pseudomonas syringae type III secreted effectors that suppress programmed cell death in plants and yeast. Plant J 37: 554–565.
[97]  Fujikawa T, Ishihara H, Leach JE, Tsuyumu S (2006) Suppression of defense response in plants by the avrBs3/pthA gene family of Xanthomonas spp. Mol. Plant-Microbe Interact 19: 342–349.
[98]  Fujikawa T, Yamashita T, Tsuyumu S (2006) Hypersensitive response suppression by type III effectors of plant pathogenic bacteria. J Gen Plant Pathol 72: 176–179.
[99]  Jackson RW, Athanassopoulos E, Tsiamis G, Mansfield JW, Sesma A, et al. (1999) Identification of a pathogenicity island, which contains genes for virulence and avirulence, on a large native plasmid in the bean pathogen Pseudomonas syringae pathovar phaseolicola. Proc Natl Acad Sci USA 96: 10875–10880.
[100]  Torto-Alalibo T, Collmer CW, Gwinn-Giglio M (2009) The Plant-Associated Microbe Gene Ontology (PAMGO) Consortium: community development of new Gene Ontology terms describing biological processes involved in microbe-host interactions. BMC Microbiol 9: Suppl 1S1.
[101]  Lindeberg M, Biehl BS, Glasner JD, Perna NT, Collmer A, et al. (2009) Gene ontology annotation highlights shared and divergent pathogenic strategies of type III effector proteins deployed by the plant pathogen Pseudomonas syringae pv tomato DC3000 and animal pathogenic Escherichia coli strains. BMC Microbiol 9: Suppl 1S4.
[102]  Sokurenko EV, Hasty DL, Dykhuizen DE (1999) Pathoadaptive mutations: gene loss and variation in bacterial pathogens. Trends Microbiol 7: 191–195.
[103]  Pallen MJ, Wren BW (2007) Bacterial pathogenomics. Nature 449: 835–842.
[104]  Arnold DL, Jackson RW, Waterfield NR, Mansfield JW (2007) Evolution of microbial virulence: the benefits of stress. Trends Genet 23: 293–300.
[105]  Ma W, Dong F, Stavrinides J, Guttman DS (2006) Type III effector diversification via both pathoadaptation and horizontal transfer in response to a coevolutionary arms race. PLoS Genetics 2: e209.
[106]  Zhou H, Morgan RL, Guttman DS, Ma W (2009) Allelic variants of the Pseudomonas syringae type III effector HopZ1 are differentially recognized by plant resistance systems. Mol Plant-Microbe Interact 22: 176–189.
[107]  Yang Y, Gabriel DW (1995) Intragenic recombination of a single plant pathogen gene provides a mechanism for the evolution of new host specificities. J Bacteriol 177: 4963–4968.
[108]  Yang B, Sugio A, White FF (2005) Avoidance of host recognition by alterations in the repetitive and C-terminal regions of AvrXa7, a type III effector of Xanthomonas oryzae pv. oryzae. Mol Plant Microbe Interact 18: 142–149.
[109]  Wichmann G, Ritchie D, Kousik CS, Bergelson J (2005) Reduced genetic variation occurs among genes of the highly clonal plant pathogen Xanthomonas axonopodis pv. vesicatoria, including the effector gene avrBs2. Appl Environ Microbiol 71: 2418–2432.
[110]  Kearney B, Ronald PC, Dahlbeck D, Staskawicz BJ (1988) Molecular basis for evasion of plant host defence in bacterial spot disease of pepper. Nature 332: 541–543.
[111]  Gonzalez AI, Ruiz ML, Polanco C (1998) Race-specific insertion of transposable element IS801 in Pseudomonas syringae pv. phaseolicola. Mol Plant Microbe Interact 11: 423–428.
[112]  Lavie M, Seunes B, Prior P, Boucher C (2004) Distribution and sequence analysis of a family of type III-dependent effectors correlate with the phylogeny of strains. Mol Plant Microbe Interact 17: 931–940.
[113]  Kearney B, Staskawicz B (1990) Characterization of IS476 and its role in bacterial spot disease of tomato and pepper. J Bacteriol 172: 143–148.
[114]  Stavrinides J, Ma W, Guttman DS (2006) Terminal reassortment drives the quantum evolution of type III effectors in bacterial pathogens. PLoS Pathog 2: e104.
[115]  Mahillon J, Chandler M (1998) Insertion sequences. Microbiol Mol Biol Rev 62: 725–774.
[116]  Kim JF, Charkowski AO, Alfano JR, Collmer A, Beer SV (1998) Sequences related to transposable elements and bacteriophages flank avirulence genes of Pseudomonas syringae. Mol Plant Microbe Interact 11: 1247–1252.
[117]  Rivas LA, Mansfield J, Tsiamis G, Jackson RW, Murillo J (2005) Changes in race-specific virulence in Pseudomonas syringae pv. phaseolicola are associated with a chimeric transposable element and rare deletion events in a plasmid-borne pathogenicity island. Appl Environ Microbiol 71: 3778–3785.
[118]  Sundin GW (2007) Genomic insights into the contribution of phytopathogenic bacterial plasmids to the evolutionary history of their hosts. Annu Rev Phytopathol 45: 129–151.
[119]  Koebnik R, Kruger A, Thieme F, Urban A, Bonas U (2006) Specific binding of the Xanthomonas campestris pv. vesicatoria AraC-type transcriptional activator HrpX to plant-inducible promoter boxes. J Bacteriol 188: 7652–7660.
[120]  Ochman H, Moran NA (2001) Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. Science 292: 1096–1099.
[121]  Pitman AR, Jackson RW, Mansfield JW, Kaitell V, Thwaites R, et al. (2005) Exposure to host resistance mechanisms drives evolution of bacterial virulence in plants. Curr Biol 15: 2230–2235.
[122]  Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, et al. (1991) Current protocols in molecular biology. New York, USA: Greene Publishing Associates-Wiley Interscience.
[123]  Ciesiolka LD, Hwin T, Gearlds JD, Minsavage GV, Saenz R, et al. (1999) Regulation of expression of avirulence gene avrRxv and identification of a family of host interaction factors by sequence analysis of avrBsT. Mol Plant Microbe Interact 12: 35–44.
[124]  Astua-Monge G, Minsavage GV, Stall RE, Davis MJ, Bonas U, et al. (2000) Resistance of tomato and pepper to T3 strains of Xanthomonas campestris pv. vesicatoria is specified by a plant-inducible avirulence gene. Mol Plant Microbe Interact 13: 911–921.
[125]  Astua-Monge G, Minsavage GV, Stall RE, Vallejos CE, Davis MJ, et al. (2000) Xv4-AvrXv4: a new gene-for-gene interaction identified between Xanthomonas campestris pv. vesicatoria race T3 and wild tomato relative Lycopersicon pennellii. Mol Plant Microbe Interact 13: 1346–1355.
[126]  Staden R, Beal KF, Bonfield JK (2000) The Staden Package. In: Misener S, Krawetz S, editors. Methods Mol Biol. 132. Totowa NJ 07512: The Humana Press Inc. pp. 115–1130.
[127]  Swofford DL (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Sunderland, Massachusetts: Sinauer Associates. Version 4.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133