全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Identification and Phylogenetic Analysis of Tityus pachyurus and Tityus obscurus Novel Putative Na+-Channel Scorpion Toxins

DOI: 10.1371/journal.pone.0030478

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Colombia and Brazil are affected by severe cases of scorpionism. In Colombia the most dangerous accidents are caused by Tityus pachyurus that is widely distributed around this country. In the Brazilian Amazonian region scorpion stings are a common event caused by Tityus obscurus. The main objective of this work was to perform the molecular cloning of the putative Na+-channel scorpion toxins (NaScTxs) from T. pachyurus and T. obscurus venom glands and to analyze their phylogenetic relationship with other known NaScTxs from Tityus species. Methodology/Principal Findings cDNA libraries from venom glands of these two species were constructed and five nucleotide sequences from T. pachyurus were identified as putative modulators of Na+-channels, and were named Tpa4, Tpa5, Tpa6, Tpa7 and Tpa8; the latter being the first anti-insect excitatory β-class NaScTx in Tityus scorpion venom to be described. Fifteen sequences from T. obscurus were identified as putative NaScTxs, among which three had been previously described, and the others were named To4 to To15. The peptides Tpa4, Tpa5, Tpa6, To6, To7, To9, To10 and To14 are closely related to the α-class NaScTxs, whereas Tpa7, Tpa8, To4, To8, To12 and To15 sequences are more related to the β-class NaScTxs. To5 is possibly an arthropod specific toxin. To11 and To13 share sequence similarities with both α and β NaScTxs. By means of phylogenetic analysis using the Maximum Parsimony method and the known NaScTxs from Tityus species, these toxins were clustered into 14 distinct groups. Conclusions/Significance This communication describes new putative NaScTxs from T. pachyurus and T. obscurus and their phylogenetic analysis. The results indicate clear geographic separation between scorpions of Tityus genus inhabiting the Amazonian and Mountain Andes regions and those distributed over the Southern of the Amazonian rainforest. Based on the consensus sequences for the different clusters, a new nomenclature for the NaScTxs is proposed.

References

[1]  Zeng XC, Corzo G, Hahin R (2005) Scorpion venom peptides without disulfide bridges. IUBMB Life 57: 13–21.
[2]  Tytgat J, Chandy KG, Garcia ML, Gutman GA, Martin-Eauclaire MF, et al. (1999) A unified nomenclature for short-chain peptides isolated from scorpion venoms: alpha-KTx molecular subfamilies. Trends Pharmacol Sci 20: 444–447.
[3]  Rodríguez de la Vega RC, Possani LD (2005) Overview of scorpion toxins specific for Na+ channels and related peptides: biodiversity, structure-function relationships and evolution. Toxicon 46: 831–844.
[4]  Silva EC, Camargos TS, Maranh?o AQ, Silva-Pereira I, Silva LP, et al. (2009) Cloning and characterization of cDNA sequences encoding for new venom peptides of the Brazilian scorpion Opisthacanthus cayaporum. Toxicon 54: 252–261.
[5]  Cestèle S, Catterall WA (2000) Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie 82: 883–892.
[6]  Possani LD, Merino E, Corona M, Bolivar F, Becerril B (2000) Peptides and genes coding for scorpion toxins that affect ion-channels. Biochimie 82: 861–868.
[7]  Jover E, Couraud F, Rochat H (1980) Two types of scorpion neurotoxins characterized by their binding to two separate receptor sites on rat brain synaptosomes. Biochem Biophys Res Commun 95: 1607–1614.
[8]  Zhijian C, Feng L, Yingliang W, Xin M, Wenxin L (2006) Genetic mechanisms of scorpion venom peptide diversification. Toxicon 47: 348–355.
[9]  Mouhat S, Jouirou B, Mosbah A, De Waard M, Sabatier JM (2004) Diversity of folds in animal toxins acting on ion channels. Biochem J 378: 717–726.
[10]  Bosmans F, Tytgat J (2007) Voltage-gated sodium channel modulation by scorpion alpha-toxins. Toxicon 49: 142–158.
[11]  Gordon D, Ilan N, Zilberberg N, Gilles N, Urbach D, et al. (2003) An ‘Old World’ scorpion beta-toxin that recognizes both insect and mammalian sodium channels. Eur J Biochem 270: 2663–2670.
[12]  Gurevitz M, Karbat I, Cohen L, Ilan N, Kahn R, et al. (2007) The insecticidal potential of scorpion beta-toxins. Toxicon 49: 473–489.
[13]  Rodríguez de la Vega RC, Possani LD (2007) Novel paradigms on scorpion toxins that affects the activating mechanism of sodium channels. Toxicon 49: 171–180.
[14]  Chippaux JP, Goyffon M (2008) Epidemiology of scorpionism: a global appraisal. Acta Trop 107: 71–79.
[15]  Abdel-Rahman MA, Omran MA, Abdel-Nabi IM, Ueda H, McVean A (2009) Intraspecific variation in the Egyptian scorpion Scorpio maurus palmatus venom collected from different biotopes. Toxicon 53: 349–359.
[16]  González-Sponga MA (2002) Arácnidos de Venezuela. Cuatro nuevas especies del género Tityus (Scorpionida: Buthidae). Bol Acad Cien Fis Mat Nat IXII: 49–66.
[17]  Soares MR, Azevedo CS, De Maria M (2002) [Scorpionism in Belo Horizonte, MG: a retrospective study]. Rev Soc Bras Med Trop 35: 359–363.
[18]  Otero R, Navío E, Céspedes FA, Nú?ez MJ, Lozano L, et al. (2004) Scorpion envenoming in two regions of Colombia: clinical, epidemiological and therapeutic aspects. Trans R Soc Trop Med Hyg 98: 742–750.
[19]  Borges A, Bermingham E, Herrera N, Alfonzo MJ, Sanjur OI (2010) Molecular systematics of the neotropical scorpion genus Tityus (Buthidae): the historical biogeography and venom antigenic diversity of toxic Venezuelan species. Toxicon 55: 436–454.
[20]  Pardal PPO, Castro LC, Jennings E, Pardal JSO, Monteiro MR (2003) [Epidemiological and clinical aspects of scorpion envenomation in the region of Santarém, Pará, Brazil]. Rev Soc Bras Med Trop 36: 349–353.
[21]  Eduardo Flórez D (2001) Escorpiones de la familia Buthidae (chelicerata: scorpiones) de Colombia. Biota Colombiana 2: 25–30.
[22]  Gómez JPC, Otero RP (2007) Ecoepidemiología de los escorpiones de importancia médica en Colombia [Eco-epidemiology of scorpions of medical importance in Colombia]. Rev Fac Nac Salud Pública 25: 50–60.
[23]  Barona J, Batista CV, Zamudio FZ, Gomez-Lagunas F, Wanke E, et al. (2006) Proteomic analysis of the venom and characterization of toxins specific for Na+ - and K+ -channels from the Colombian scorpion Tityus pachyurus. Biochim Biophys Acta 1764: 76–84.
[24]  Louren?o WR, Leguin EA (2008) The true identity of Scorpio (Atreus) obscurus Gervais, 1843 (Scorpiones, Buthidae). Euscorpius 75: 1–9.
[25]  Batista CV, del Pozo L, Zamudio FZ, Contreras S, Becerril B, et al. (2004) Proteomics of the venom from the Amazonian scorpion Tityus cambridgei and the role of prolines on mass spectrometry analysis of toxins. J Chromatogr B Analyt Technol Biomed Life Sci 803: 55–66.
[26]  Batista CV, Gómez-Lagunas F, Lucas S, Possani LD (2000) Tc1, from Tityus cambridgei, is the first member of a new subfamily of scorpion toxin that blocks K+-channels. FEBS Lett 486: 117–120.
[27]  Batista CV, Gómez-Lagunas F, Rodríguez de la Vega RC, Hajdu P, Panyi G, et al. (2002) Two novel toxins from the Amazonian scorpion Tityus cambridgei that block Kv1.3 and Shaker B K+-channels with distinctly different affinities. Biochim Biophys Acta 1601: 123–131.
[28]  Batista CV, Zamudio FZ, Lucas S, Fox JW, Frau A, et al. (2002) Scorpion toxins from Tityus cambridgei that affect Na+-channels. Toxicon 40: 557–562.
[29]  Murgia AR, Batista CV, Prestipino G, Possani LD (2004) Amino acid sequence and function of a new alpha-toxin from the Amazonian scorpion Tityus cambridgei. Toxicon 43: 737–740.
[30]  Caliskan F, García BI, Coronas FI, Batista CV, Zamudio FZ, et al. (2006) Characterization of venom components from the scorpion Androctonus crassicauda of Turkey: peptides and genes. Toxicon 48: 12–22.
[31]  Demeure K, Gabelica V, De Pauw EA (2010) New advances in the understanding of the in-source decay fragmentation of peptides in MALDI-TOF-MS. J Am Soc Mass Spectrom 21: 1906–1917.
[32]  Lazo GR, Tong J, Miller R, Hsia C, Rausch C, et al. (2001) Software scripts for quality checking of high-throughput nucleic acid sequencers. Biotechniques 30: 1300–1305.
[33]  Huang X, Madan A (1999) CAP3: A DNA sequence assembly program. Genome Res 9: 868–877.
[34]  Loret EP, Martin-Eauclaire MF, Mansuelle P, Sampieri F, Granier C, et al. (1991) An anti-insect toxin purified from the scorpion Androctonus australis Hector also acts on the alpha- and beta-sites of the mammalian sodium channel: sequence and circular dichroism study. Biochemistry 30: 633–640.
[35]  Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882.
[36]  Felsenstein J (1985) Confidence limits on phylogenies: An approach using the Bootstrap. Evolution 39: 783–791.
[37]  Nei M, Kumar S (2000) Molecular Evolution and Phylogenetics. USA: Oxford University Press. 333 p.
[38]  Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: Molecular evolutionary genetics analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony methods. Mol Biol Evol. In press.
[39]  Becerril B, Marangoni S, Possani LD (1997) Toxins and genes isolated from scorpions of the genus Tityus. Toxicon 35: 821–835.
[40]  Becerril B, Corona M, Coronas FI, Zamudio F, Calderón-Aranda ES, et al. (1996) Toxic peptides and genes encoding toxin gamma of the Brazilian scorpions Tityus bahiensis and Tityus stigmurus. Biochem J 313(Pt 3): 753–760.
[41]  Kalapothakis E, Jardim S, Magalh?es AC, Mendes TM, De Marco L, et al. (2001) Screening of expression libraries using ELISA: identification of immunogenic proteins from Tityus bahiensis and Tityus serrulatus venom. Toxicon 39: 679–685.
[42]  Corona M, Zurita M, Possani LD, Becerril B (1996) Cloning and characterization of the genomic region encoding toxin IV-5 from the scorpion Tityus serrulatus Lutz and Mello. Toxicon 34: 251–256.
[43]  D'Suze G, Schwartz EF, García-Gómez BI, Sevcik C, Possani LD (2009) Molecular cloning and nucleotide sequence analysis of genes from a cDNA library of the scorpion Tityus discrepans. Biochimie 91: 1010–1019.
[44]  Borges A, García CC, Lugo E, Alfonzo MJ, Jowers MJ, et al. (2006) Diversity of long-chain toxins in Tityus zulianus and Tityus discrepans venoms (Scorpiones, Buthidae): molecular, immunological, and mass spectral analyses. Comp Biochem Physiol C Toxicol Pharmacol 142: 240–252.
[45]  Froy O, Sagiv T, Poreh M, Urbach D, Zilberberg N, et al. (1999) Dynamic diversification from a putative common ancestor of scorpion toxins affecting sodium, potassium, and chloride channels. J Mol Evol 48: 187–196.
[46]  Borges A, Alfonzo MJ, García CC, Winand NJ, Leipold E, et al. (2004) Isolation, molecular cloning and functional characterization of a novel beta-toxin from the Venezuelan scorpion, Tityus zulianus. Toxicon 43: 671–684.
[47]  Pimenta AM, Martin-Eauclaire M, Rochat H, Figueiredo SG, Kalapothakis E, et al. (2001) Purification, amino-acid sequence and partial characterization of two toxins with anti-insect activity from the venom of the South American scorpion Tityus bahiensis (Buthidae). Toxicon 39: 1009–1019.
[48]  Possani LD, Martin BM, Fletcher MD, Fletcher PLJ (1991) Discharge effect on pancreatic exocrine secretion produced by toxins purified from Tityus serrulatus scorpion venom. J Biol Chem 266: 3178–3185.
[49]  Mansuelle P, Martin-Eauclaire MF, Chávez-Olórtegui C, de Lima ME, Rochat H, et al. (1992) The beta-type toxin Ts II from the scorpion Tityus serrulatus: amino acid sequence determination and assessment of biological and antigenic properties. Nat Toxins 1: 119–125.
[50]  Ruiming Z, Yibao M, Yawen H, Zhiyong D, Yingliang W, et al. (2010) Comparative venom gland transcriptome analysis of the scorpion Lychas mucronatus reveals intraspecific toxic gene diversity and new venomous components. BMC Genomics 11: 452.
[51]  García-Gómez BI, Olamendi-Portugal TC, Paniagua J, van der Walt J, Dyason K, et al. (2009) Heterologous expression of a gene that codes for Pg8, a scorpion toxin of Parabuthus granulatus, capable of generating protecting antibodies in mice. Toxicon 53: 770–778.
[52]  Sanz L, Escolano J, Ferretti M, Biscoglio MJ, Rivera E, et al. (2008) Snake venomics of the South and Central American Bushmasters. Comparison of the toxin composition of Lachesis muta gathered from proteomic versus transcriptomic analysis. J Proteomics 71: 46–60.
[53]  Schwartz EF, Diego-García E, Rodríguez de la Vega RC, Possani LD (2007) Transcriptome analysis of the venom gland of the Mexican scorpion Hadrurus gertschi (Arachnida: Scorpiones). BMC Genomics 8: 119.
[54]  Junqueira-de-Azevedo IL, Ching AT, Carvalho E, Faria F, Nishiyama MY Jr, et al. (2006) Lachesis muta (Viperidae) cDNAs reveal diverging pit viper molecules and scaffolds typical of cobra (Elapidae) venoms: implications for snake toxin repertoire evolution. Genetics 173: 877–889.
[55]  Ma Y, Zhao R, He Y, Li S, Liu J, et al. (2009) Transcriptome analysis of the venom gland of the scorpion Scorpiops jendeki: implication for the evolution of the scorpion venom arsenal. BMC Genomics 10: 290.
[56]  D'Suze G, Sevcik C, Corona M, Zamudio FZ, Batista CV, et al. (2004) Ardiscretin a novel arthropod-selective toxin from Tityus discrepans scorpion venom. Toxicon 43: 263–272.
[57]  Escoubas P, Quinton L, Nicholson GM (2008) Venomics: unravelling the complexity of animal venoms with mass spectrometry. J Mass Spectrom 43: 279–295.
[58]  Escoubas P (2006) Mass spectrometry in toxinology: a 21st-century technology for the study of biopolymers from venoms. Toxicon 47: 609–613.
[59]  King GF, Gentz MC, Escoubas P, Nicholson GM (2008) A rational nomenclature for naming peptide toxins from spiders and other venomous animals. Toxicon 52: 264–276.
[60]  Cologna CT, Marcussi S, Giglio JR, Soares AM, Arantes EC (2009) Tityus serrulatus scorpion venom and toxins: an overview. Protein Pept Lett 16: 920–932.
[61]  Gurevitz M, Gordon D, Ben-Natan S, Turkov M, Froy O (2001) Diversification of neurotoxins by C-tail ‘wiggling’: a scorpion recipe for survival. FASEB J 15: 1201–1205.
[62]  Froy O, Gurevitz M (2003) New insight on scorpion divergence inferred from comparative analysis of toxin structure, pharmacology and distribution. Toxicon 42: 549–555.
[63]  Blanc E, Hassani O, Meunier S, Mansuelle P, Sampieri F, et al. (1997) 1H-NMR-derived secondary structure and overall fold of a natural anatoxin from the scorpion Androctonus australis Hector. Eur J Biochem 247: 1118–1126.
[64]  Yao J, Chen X, Li H, Zhou Y, Yao L, et al. (2005) BmP09, a “long chain” scorpion peptide blocker of BK channels. J Biol Chem 280: 14819–14828.
[65]  Srairi-Abid N, Guijarro JI, Benkhalifa R, Mantegazza M, Cheikh A, et al. (2005) A new type of scorpion Na+-channel-toxin-like polypeptide active on K+ channels. Biochem J 388: 455–464.
[66]  Inceoglu B, Lango J, Wu J, Hawkins P, Southern J, et al. (2001) Isolation and characterization of a novel type of neurotoxic peptide from the venom of the South African scorpion Parabuthus transvaalicus (Buthidae). Eur J Biochem 268: 5407–5413.
[67]  Gordon D, Karbat I, Ilan N, Cohen L, Kahn R, et al. (2007) The differential preference of scorpion alpha-toxins for insect or mammalian sodium channels: implications for improved insect control. Toxicon 49: 452–472.
[68]  Karbat I, Frolow F, Froy O, Gilles N, Cohen L, et al. (2004) Molecular basis of the high insecticidal potency of scorpion alpha-toxins. J Biol Chem 279: 31679–31686.
[69]  Cohen L, Karbat I, Gilles N, Ilan N, Benveniste M, et al. (2005) Common features in the functional surface of scorpion beta-toxins and elements that confer specificity for insect and mammalian voltage-gated sodium channels. J Biol Chem 280: 5045–5053.
[70]  Wilson E (1988) 538 p. Biodiversity: John Wiley & Sons.
[71]  Louren?o WR (2001) Scorpion diversity in Tropical South America: Implications for conservation programs. In: Brownell P, Polis G, editors. Scorpion Biology and Research. Oxford: Oxford Univ. Press. pp. 406–416.
[72]  Roberts JL, Brown JL, May R, Arizabal W, Schulte R, et al. (2006) Genetic divergence and speciation in lowland and montane peruvian poison frogs. Mol Phylogenet Evol 41: 149–164.
[73]  Louren?o WR (1994) Diversity and endemism in tropical versus temperate scorpion communities. Biogeographica 70: 155–160.
[74]  Borges A, Rojas-Runjaic FJ, Diez N, Faks JG, Op den Camp HJ, et al. (2010) Envenomation by the scorpion Tityus breweri in the Guayana Shield, Venezuela: report of a case, efficacy and reactivity of antivenom, and proposal for a toxinological partitioning of the Venezuelan scorpion fauna. Wilderness Environ Med 21: 282–290.
[75]  Ben Othmen A, Said K, Mahamdallie SS, Testa JM, Haouas Z, et al. (2009) Phylogeography of Androctonus species (Scorpiones: Buthidae) in Tunisia: Diagnostic characters for linking species to scorpionism. Acta Trop 112: 77–85.
[76]  Amaro I, Riano-Umbarila L, Becerril B, Possani LD (2011) Isolation and characterization of a human antibody fragment specific for Ts1 toxin from Tityus serrulatus scorpion. Immunol Lett 139: 73–79.
[77]  Asano ME, Arnund RM, Lopes FOB, Pardal JSO, Pardal PPO (1996) Estudo clínico e epidemiológico de 12 acidentes por escorpi?es atendidos no Hospital Universitários Jo?o de Barros Barreto, Belém-Pará, no período de 1992–1995. Revista da Sociedade Brasileira de Medicina Tropical 29: 243.
[78]  Barona J, Otero R, Nú?ez V (2004) [Toxicological and immunological aspects of scorpion venom (Tityus pachyurus): neutralizing capacity of antivenoms produced in Latin America]. Biomedica 24: 42–49.
[79]  Borges A, Rojas-Runjaic FJM (2007) Tityus perijanensis González-Sponga (Scorpiones, Buthidae): Molecular assessment of its geographical distribution and venom lethality of Venezuelan populations. Toxicon 50: 1005–1010.
[80]  Bucaretchi F, Baracat EC, Nogueira RJN, Chaves A, Zambrone FAD, et al. (1995) A comparative study of severe scorpion envenomation in children caused by Tityus bahiensis and Tityus serrulatus. Rev Inst Med Trop S Paulo 37: 331–336.
[81]  Cupo P, Jurca M, Azevedo-Marques MM, Oliveira JSM, Hering SE (1994) Severe scorpion envenomation in Brazil: clinical, laboratory and anatomopathological aspects. Rev Inst Med Trop S Paulo 36: 67–76.
[82]  De Sousa L, Boadas J, Kiriakos D, Borges A, Boadas J, et al. (2007) Scorpionism due to Tityus neoespartanus (Scorpiones, Buthidae) in Margarita Island, northeastern Venezuela. Reva Soc Bras Med Trop 40: 681–685.
[83]  Borges A, Tsushima RG, Backx PH (1999) Antibodies against Tityus discrepans venom do not abolish the effect of Tityus serrulatus venom on the rat sodium and potassium channels. Toxicon 37: 867–881.
[84]  Borges A, Lugo E, García CC, Rojas F, Alfonzo MJ (2005) Toxicity of venom from Tityus perijanensis (Scorpiones, Buthidae) and in vivo neutralization by the anti-Tityus discrepans antivenom. Acta Cient Venez 5: 56–67.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133