全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

A Comparison of rpoB and 16S rRNA as Markers in Pyrosequencing Studies of Bacterial Diversity

DOI: 10.1371/journal.pone.0030600

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background The 16S rRNA gene is the gold standard in molecular surveys of bacterial and archaeal diversity, but it has the disadvantages that it is often multiple-copy, has little resolution below the species level and cannot be readily interpreted in an evolutionary framework. We compared the 16S rRNA marker with the single-copy, protein-coding rpoB marker by amplifying and sequencing both from a single soil sample. Because the higher genetic resolution of the rpoB gene prohibits its use as a universal marker, we employed consensus-degenerate primers targeting the Proteobacteria. Methodology/Principal Findings Pyrosequencing can be problematic because of the poor resolution of homopolymer runs. As these erroneous runs disrupt the reading frame of protein-coding sequences, removal of sequences containing nonsense mutations was found to be a valuable filter in addition to flowgram-based denoising. Although both markers gave similar estimates of total diversity, the rpoB marker revealed more species, requiring an order of magnitude fewer reads to obtain 90% of the true diversity. The application of population genetic methods was demonstrated on a particularly abundant sequence cluster. Conclusions/Significance The rpoB marker can be a complement to the 16S rRNA marker for high throughput microbial diversity studies focusing on specific taxonomic groups. Additional error filtering is possible and tests for recombination or selection can be employed.

References

[1]  Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180: 4765–4774.
[2]  Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, et al. (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 82: 6955–6959.
[3]  Ward DM, Weller R, Bateson MM (1990) 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345: 63–65.
[4]  Huse SM, Dethlefsen L, Huber JA, Mark Welch D, Relman DA, et al. (2008) Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet 4: e1000255.
[5]  Case RJ, Boucher Y, Dahllof I, Holmstrom C, Doolittle WF, et al. (2007) Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Appl Environ Microbiol 73: 278–288.
[6]  Adekambi T, Drancourt M, Raoult D (2009) The rpoB gene as a tool for clinical microbiologists. Trends Microbiol 17: 37–45.
[7]  Adekambi T, Shinnick TM, Raoult D, Drancourt M (2008) Complete rpoB gene sequencing as a suitable supplement to DNA-DNA hybridization for bacterial species and genus delineation. Int J Syst Evol Microbiol 58: 1807–1814.
[8]  Mollet C, Drancourt M, Raoult D (1997) rpoB sequence analysis as a novel basis for bacterial identification. Mol Microbiol 26: 1005–1011.
[9]  Santos SR, Ochman H (2004) Identification and phylogenetic sorting of bacterial lineages with universally conserved genes and proteins. Environ Microbiol 6: 754–759.
[10]  Wooley JC, Godzik A, Friedberg I (2010) A primer on metagenomics. PLoS Comput Biol 6: e1000667.
[11]  Pei AY, Oberdorf WE, Nossa CW, Agarwal A, Chokshi P, et al. (2010) Diversity of 16S rRNA genes within individual prokaryotic genomes. Appl Environ Microbiol 76: 3886–3897.
[12]  Walsh DA, Bapteste E, Kamekura M, Doolittle WF (2004) Evolution of the RNA polymerase B′ subunit gene (rpoB′) in Halobacteriales: a complementary molecular marker to the SSU rRNA gene. Mol Biol Evol 21: 2340–2351.
[13]  Fox GE, Wisotzkey JD, Jurtshuk P Jr (1992) How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42: 166–170.
[14]  Kunin V, Engelbrektson A, Ochman H, Hugenholtz P (2010) Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ Microbiol 12: 118–123.
[15]  Quince C, Lanzen A, Curtis TP, Davenport RJ, Hall N, et al. (2009) Accurate determination of microbial diversity from 454 pyrosequencing data. Nat Methods 6: 639–641.
[16]  Reeder J, Knight R (2009) The ‘rare biosphere’: a reality check. Nat Methods 6: 636–637.
[17]  Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ (2011) Removing Noise From Pyrosequenced Amplicons. BMC Bioinformatics 12: 38.
[18]  Fierer N, Hamady M, Lauber CL, Knight R (2008) The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci U S A 105: 17994–17999.
[19]  Rose T, Henikoff J, Henikoff S (2003) CODEHOP (COnsensus-DEgenerate Hybrid Oligonucleotide Primer) PCR primer design. Nucl Acids Res 31: 3763–3766.
[20]  Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48: 443–453.
[21]  Huson DH, Auch AF, Qi J, Schuster SC (2007) MEGAN analysis of metagenomic data. Genome Res 17: 377–386.
[22]  Quince C, Curtis TP, Sloan WT (2008) The rational exploration of microbial diversity. ISME J 2: 997–1006.
[23]  Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596–1599.
[24]  Teacher AG, Griffiths DJ (2011) HapStar: automated haplotype network layout and visualization. Mol Ecol Resour 11: 151–153.
[25]  Huson DH, Bryant D (2005) Application of Phylogenetic Networks in Evolutionary Studies. Mol Biol Evol 23: 254–267.
[26]  Bruen TC, Philippe H, Bryant D (2006) A simple and robust statistical test to detect the presence of recombination. Genetics 172: 2665–2681.
[27]  Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72: 1719–1728.
[28]  Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33: 152–155.
[29]  Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG (2004) eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol 186: 1518–1530.
[30]  Spratt BG, Hanage WP, Li B, Aanensen DM, Feil EJ (2004) Displaying the relatedness among isolates of bacterial species – the eBURST approach. FEMS Microbiol Lett 241: 129–134.
[31]  Zamborsky DJ, Nishiguchi MK (2011) Phylogeographical patterns among Mediterranean sepiolid squids and their Vibrio symbionts: environment drives specificity among sympatric species. Appl Environ Microbiol 77: 642–649.
[32]  Feil EJ (2004) Small change: keeping pace with microevolution. Nat Rev Microbiol 2: 483–495.
[33]  Turner KM, Hanage WP, Fraser C, Connor TR, Spratt BG (2007) Assessing the reliability of eBURST using simulated populations with known ancestry. BMC Microbiol 7: 30.
[34]  Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, et al. (2001) Structural mechanism for rifampicin inhibition of bacterial rna polymerase. Cell 104: 901–912.
[35]  Ben Salah I, Adekambi T, Raoult D, Drancourt M (2008) rpoB sequence-based identification of Mycobacterium avium complex species. Microbiol 154: 3715–3723.
[36]  Gaget V, Gribaldo S, Tandeau de Marsac N (2011) A rpoB signature sequence provides unique resolution for the molecular typing of cyanobacteria. Int J Syst Evol Microbiol 61: 170–183.
[37]  Minegishi H, Kamekura M, Itoh T, Echigo A, Usami R, et al. (2010) Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B′ (rpoB′) gene. Int J Syst Evol Microbiol 60: 2398–2408.
[38]  Olvera A, Cerda-Cuellar M, Aragon V (2006) Study of the population structure of Haemophilus parasuis by multilocus sequence typing. Microbiol 152: 3683–3690.
[39]  Diancourt L, Passet V, Verhoef J, Grimont PA, Brisse S (2005) Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol 43: 4178–4182.
[40]  Salerno A, Deletoile A, Lefevre M, Ciznar I, Krovacek K, et al. (2007) Recombining population structure of the Enterobacteriaceae Plesiomonas shigelloides revealed by multilocus sequence typing. J Bacteriol 189: 7808–7818.
[41]  Wu M, Eisen JA (2008) A simple, fast, and accurate method of phylogenomic inference. Genome Biol 9: R151.
[42]  Wu D, Wu M, Halpern A, Rusch DB, Yooseph S, et al. (2011) Stalking the fourth domain in metagenomic data: searching for, discovering, and interpreting novel, deep branches in marker gene phylogenetic trees. PLoS ONE 6: e18011.
[43]  Hou XL, Cao QY, Jia HY, Chen Z (2008) Pyrosequencing analysis of the gyrB gene to differentiate bacteria responsible for diarrheal diseases. Eur J Clin Microbiol Infect Dis 27: 587–596.
[44]  Oakley BB, Carbonero F, Dowd SE, Hawkins RJ, Purdy KJ (2011) Contrasting patterns of niche partitioning between two anaerobic terminal oxidizers of organic matter. ISME J. doi:10.1038/ismej.2011.165.
[45]  Kuhner MK (2009) Coalescent genealogy samplers: windows into population history. Trends Ecol Evol 24: 86–93.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133