全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Liver and Muscle in Morbid Obesity: The Interplay of Fatty Liver and Insulin Resistance

DOI: 10.1371/journal.pone.0031738

Full-Text   Cite this paper   Add to My Lib

Abstract:

Introduction Nonalcoholic fatty liver disease (NAFLD) can be seen as a manifestation of overnutrition. The muscle is a central player in the adaptation to energy overload, and there is an association between fatty-muscle and -liver. We aimed to correlate muscle morphology, mitochondrial function and insulin signaling with NAFLD severity in morbid obese patients. Methods Liver and deltoid muscle biopsies were collected during bariatric surgery in NAFLD patients. NAFLD Activity Score and Younossi's classification for nonalcoholic steatohepatitis (NASH) were applied to liver histology. Muscle evaluation included morphology studies, respiratory chain complex I to IV enzyme assays, and analysis of the insulin signaling cascade. A healthy lean control group was included for muscle morphology and mitochondrial function analyses. Results Fifty one NAFLD patients were included of whom 43% had NASH. Intramyocellular lipids (IMCL) were associated with the presence of NASH (OR 12.5, p<0.001), progressive hepatic inflammation (p = 0.029) and fibrosis severity (p = 0.010). There was a trend to an association between IMCL and decreased Akt phosphorylation (p = 0.059), despite no association with insulin resistance. In turn, hepatic steatosis (p = 0.015) and inflammation (p = 0.013) were associated with decreased Akt phosphoryation. Citrate synthase activity was lower in obese patients (p = 0.047) whereas complex I (p = 0.040) and III (p = 0.036) activities were higher, compared with controls. Finally, in obese patients, complex I activity increased with progressive steatosis (p = 0.049) and with a trend with fibrosis severity (p = 0.056). Conclusions In morbid obese patients, presence of IMCL associates with NASH and advanced fibrosis. Muscle mitochondrial dysfunction does not appear to be a major driving force contributing to muscle fat accumulation, insulin resistance or liver disease. Importantly, insulin resistance in muscle might occur at a late point in the insulin signaling cascade and be associated with IMCL and NAFLD severity.

References

[1]  Argo CK, Northup PG, Al-Osaimi AM, Caldwell SH (2009) Systematic review of risk factors for fibrosis progression in non-alcoholic steatohepatitis. J Hepatol 51: 371–379.
[2]  Ekstedt M, Franzen LE, Mathiesen UL, Thorelius L, Holmqvist M, et al. (2006) Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology 44: 865–873.
[3]  Defronzo RA (2009) Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 58: 773–795.
[4]  Kuhlmann J, Neumann-Haefelin C, Belz U, Kalisch J, Juretschke HP, et al. (2003) Intramyocellular lipid and insulin resistance: a longitudinal in vivo 1H-spectroscopic study in Zucker diabetic fatty rats. Diabetes 52: 138–144.
[5]  van Herpen NA, Schrauwen-Hinderling VB (2008) Lipid accumulation in non-adipose tissue and lipotoxicity. Physiol Behav 94: 231–241.
[6]  Goodpaster BH, Theriault R, Watkins SC, Kelley DE (2000) Intramuscular lipid content is increased in obesity and decreased by weight loss. Metabolism 49: 467–472.
[7]  Sinha R, Dufour S, Petersen KF, LeBon V, Enoksson S, et al. (2002) Assessment of skeletal muscle triglyceride content by (1)H nuclear magnetic resonance spectroscopy in lean and obese adolescents: relationships to insulin sensitivity, total body fat, and central adiposity. Diabetes 51: 1022–1027.
[8]  Thamer C, Machann J, Bachmann O, Haap M, Dahl D, et al. (2003) Intramyocellular lipids: anthropometric determinants and relationships with maximal aerobic capacity and insulin sensitivity. J Clin Endocrinol Metab 88: 1785–1791.
[9]  Bachmann OP, Dahl DB, Brechtel K, Machann J, Haap M, et al. (2001) Effects of intravenous and dietary lipid challenge on intramyocellular lipid content and the relation with insulin sensitivity in humans. Diabetes 50: 2579–2584.
[10]  Hulver MW, Berggren JR, Cortright RN, Dudek RW, Thompson RP, et al. (2003) Skeletal muscle lipid metabolism with obesity. Am J Physiol Endocrinol Metab 284: E741–747.
[11]  Hajduch E, Balendran A, Batty IH, Litherland GJ, Blair AS, et al. (2001) Ceramide impairs the insulin-dependent membrane recruitment of protein kinase B leading to a loss in downstream signalling in L6 skeletal muscle cells. Diabetologia 44: 173–183.
[12]  Ellis BA, Poynten A, Lowy AJ, Furler SM, Chisholm DJ, et al. (2000) Long-chain acyl-CoA esters as indicators of lipid metabolism and insulin sensitivity in rat and human muscle. Am J Physiol Endocrinol Metab 279: E554–560.
[13]  Holland WL, Knotts TA, Chavez JA, Wang LP, Hoehn KL, et al. (2007) Lipid mediators of insulin resistance. Nutr Rev 65: S39–46.
[14]  Eckardt K, Taube A, Eckel J (2011) Obesity-associated insulin resistance in skeletal muscle: Role of lipid accumulation and physical inactivity. Rev Endocr Metab Disord 12: 163–172.
[15]  Dengel DR, Pratley RE, Hagberg JM, Rogus EM, Goldberg AP (1996) Distinct effects of aerobic exercise training and weight loss on glucose homeostasis in obese sedentary men. J Appl Physiol 81: 318–325.
[16]  Perseghin G, Scifo P, Danna M, Battezzati A, Benedini S, et al. (2002) Normal insulin sensitivity and IMCL content in overweight humans are associated with higher fasting lipid oxidation. Am J Physiol Endocrinol Metab 283: E556–564.
[17]  Liu L, Zhang Y, Chen N, Shi X, Tsang B, et al. (2007) Upregulation of myocellular DGAT1 augments triglyceride synthesis in skeletal muscle and protects against fat-induced insulin resistance. J Clin Invest 117: 1679–1689.
[18]  Kitajima Y, Eguchi Y, Ishibashi E, Nakashita S, Aoki S, et al. (2010) Age-related fat deposition in multifidus muscle could be a marker for nonalcoholic fatty liver disease. J Gastroenterol 45: 218–224.
[19]  (1992) Gastrointestinal surgery for severe obesity: National Institutes of Health Consensus Development Conference Statement. Am J Clin Nutr 55: 615S–619S.
[20]  Group NHBPEPW (1993) Report on primary prevention of hypertension. Arch Intern Med 153: 325–334.
[21]  Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, et al. (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28: 412–419.
[22]  Marchesini G, Bugianesi E, Forlani G, Cerrelli F, Lenzi M, et al. (2003) Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 37: 917–923.
[23]  Genuth S, Alberti KG, Bennett P, Buse J, Defronzo R, et al. (2003) Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 26: 3160–3167.
[24]  (2002) Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 106: 3143–3421.
[25]  Ratziu V, Bellentani S, Cortez-Pinto H, Day C, Marchesini G (2010) A position statement on NAFLD/NASH based on the EASL 2009 special conference. J Hepatol 53: 372–384.
[26]  Younossi Z, Stepanova M, Rafiq N, Makhlouf H, Younoszai Z, et al. (2011) Pathologic criteria for non-alcoholic steatohepatitis (NASH): Inter-protocol agreement and ability to predict liver-related mortality. Hepatology 53: 1874–1882.
[27]  Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, et al. (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41: 1313–1321.
[28]  Ramalho RM, Cortez-Pinto H, Castro RE, Sola S, Costa A, et al. (2006) Apoptosis and Bcl-2 expression in the livers of patients with steatohepatitis. Eur J Gastroenterol Hepatol 18: 21–29.
[29]  Kraegen EW, Cooney GJ, Turner N (2008) Muscle insulin resistance: a case of fat overconsumption, not mitochondrial dysfunction. Proc Natl Acad Sci U S A 105: 7627–7628.
[30]  Kim JY, Hickner RC, Cortright RL, Dohm GL, Houmard JA (2000) Lipid oxidation is reduced in obese human skeletal muscle. Am J Physiol Endocrinol Metab 279: E1039–1044.
[31]  Kelley DE, He J, Menshikova EV, Ritov VB (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51: 2944–2950.
[32]  Holloway GP, Bonen A, Spriet LL (2009) Regulation of skeletal muscle mitochondrial fatty acid metabolism in lean and obese individuals. Am J Clin Nutr 89: 455S–462S.
[33]  Abdul-Ghani MA, DeFronzo RA (2010) Pathogenesis of insulin resistance in skeletal muscle. J Biomed Biotechnol 2010: 476279.
[34]  Hawley JA, Lessard SJ (2007) Mitochondrial function: use it or lose it. Diabetologia 50: 699–702.
[35]  Alves RM, Vitorino R, Figueiredo P, Duarte JA, Ferreira R, et al. (2010) Lifelong physical activity modulation of the skeletal muscle mitochondrial proteome in mice. J Gerontol A Biol Sci Med Sci 65: 832–842.
[36]  Safdar A, Hamadeh MJ, Kaczor JJ, Raha S, Debeer J, et al. (2010) Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary older adults. PLoS One 5: e10778.
[37]  Rimbert V, Boirie Y, Bedu M, Hocquette JF, Ritz P, et al. (2004) Muscle fat oxidative capacity is not impaired by age but by physical inactivity: association with insulin sensitivity. Faseb J 18: 737–739.
[38]  Turner N, Bruce CR, Beale SM, Hoehn KL, So T, et al. (2007) Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents. Diabetes 56: 2085–2092.
[39]  Hancock CR, Han DH, Chen M, Terada S, Yasuda T, et al. (2008) High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc Natl Acad Sci U S A 105: 7815–7820.
[40]  Benton CR, Wright DC, Bonen A (2008) PGC-1alpha-mediated regulation of gene expression and metabolism: implications for nutrition and exercise prescriptions. Appl Physiol Nutr Metab 33: 843–862.
[41]  Chanseaume E, Tardy AL, Salles J, Giraudet C, Rousset P, et al. (2007) Chronological approach of diet-induced alterations in muscle mitochondrial functions in rats. Obesity (Silver Spring) 15: 50–59.
[42]  Cusi K, Maezono K, Osman A, Pendergrass M, Patti ME, et al. (2000) Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest 105: 311–320.
[43]  Thrush AB, Brindley DN, Chabowski A, Heigenhauser GJ, Dyck DJ (2009) Skeletal muscle lipogenic protein expression is not different between lean and obese individuals: a potential factor in ceramide accumulation. J Clin Endocrinol Metab 94: 5053–5061.
[44]  Adams JM 2nd, Pratipanawatr T, Berria R, Wang E, DeFronzo RA, et al. (2004) Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes 53: 25–31.
[45]  Yu C, Chen Y, Cline GW, Zhang D, Zong H, et al. (2002) Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 277: 50230–50236.
[46]  Samuel VT, Petersen KF, Shulman GI (2010) Lipid-induced insulin resistance: unravelling the mechanism. Lancet 375: 2267–2277.
[47]  Dube JJ, Amati F, Toledo FG, Stefanovic-Racic M, Rossi A, et al. (2011) Effects of weight loss and exercise on insulin resistance, and intramyocellular triacylglycerol, diacylglycerol and ceramide. Diabetologia 54: 1147–1156.
[48]  Ferreira DM, Castro RE, Machado MV, Evangelista T, Silvestre A, et al. (2011) Apoptosis and insulin resistance in liver and peripheral tissues of morbidly obese patients is associated with different stages of non-alcoholic fatty liver disease. Diabetologia 54: 1788–1798.
[49]  Monroy A, Kamath S, Chavez AO, Centonze VE, Veerasamy M, et al. (2009) Impaired regulation of the TNF-alpha converting enzyme/tissue inhibitor of metalloproteinase 3 proteolytic system in skeletal muscle of obese type 2 diabetic patients: a new mechanism of insulin resistance in humans. Diabetologia 52: 2169–2181.
[50]  Fiorentino L, Vivanti A, Cavalera M, Marzano V, Ronci M, et al. (2010) Increased tumor necrosis factor alpha-converting enzyme activity induces insulin resistance and hepatosteatosis in mice. Hepatology 51: 103–110.
[51]  Menghini R, Menini S, Amoruso R, Fiorentino L, Casagrande V, et al. (2009) Tissue inhibitor of metalloproteinase 3 deficiency causes hepatic steatosis and adipose tissue inflammation in mice. Gastroenterology 136: 663–672 e664.
[52]  Polyzos SA, Kountouras J, Zavos C, Tsiaousi E (2010) The role of adiponectin in the pathogenesis and treatment of non-alcoholic fatty liver disease. Diabetes Obes Metab 12: 365–383.
[53]  Xu A, Wang Y, Keshal H, Xu LY, Lam KS, et al. (2003) The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest 112: 91–100.
[54]  Polyzos SA, Toulis KA, Goulis DG, Zavos C, Kountouras J (2011) Serum total adiponectin in nonalcoholic fatty liver disease: a systematic review and meta-analysis. Metabolism 60: 313–326.
[55]  Bugianesi E, Pagotto U, Manini R, Vanni E, Gastaldelli A, et al. (2005) Plasma adiponectin in nonalcoholic fatty liver is related to hepatic insulin resistance and hepatic fat content, not to liver disease severity. J Clin Endocrinol Metab 90: 3498–3504.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133