Background The epidemiology of non-Typhi Salmonella (NTS) bacteremia in Africa will likely evolve as potential co-factors, such as HIV, malaria, and urbanization, also change. Methods As part of population-based surveillance among 55,000 persons in malaria-endemic, rural and malaria-nonendemic, urban Kenya from 2006–2009, blood cultures were obtained from patients presenting to referral clinics with fever ≥38.0°C or severe acute respiratory infection. Incidence rates were adjusted based on persons with compatible illnesses, but whose blood was not cultured. Results NTS accounted for 60/155 (39%) of blood culture isolates in the rural and 7/230 (3%) in the urban sites. The adjusted incidence in the rural site was 568/100,000 person-years, and the urban site was 51/100,000 person-years. In both sites, the incidence was highest in children <5 years old. The NTS-to-typhoid bacteremia ratio in the rural site was 4.6 and in the urban site was 0.05. S. Typhimurium represented >85% of blood NTS isolates in both sites, but only 21% (urban) and 64% (rural) of stool NTS isolates. Overall, 76% of S. Typhimurium blood isolates were multi-drug resistant, most of which had an identical profile in Pulse Field Gel Electrophoresis. In the rural site, the incidence of NTS bacteremia increased during the study period, concomitant with rising malaria prevalence (monthly correlation of malaria positive blood smears and NTS bacteremia cases, Spearman's correlation, p = 0.018 for children, p = 0.16 adults). In the rural site, 80% of adults with NTS bacteremia were HIV-infected. Six of 7 deaths within 90 days of NTS bacteremia had HIV/AIDS as the primary cause of death assigned on verbal autopsy. Conclusions NTS caused the majority of bacteremias in rural Kenya, but typhoid predominated in urban Kenya, which most likely reflects differences in malaria endemicity. Control measures for malaria, as well as HIV, will likely decrease the burden of NTS bacteremia in Africa.
References
[1]
Walsh AL, Phiri AJ, Graham SM, Molyneux EM, Molyneux ME (2000) Bacteremia in febrile Malawian children: clinical and microbiologic features. Pediatr Infect Dis J 19(4): 312–8.
[2]
Graham SM, Molyneux EM, Walsh AL, Cheesborough JS, Molyneux ME, et al. (2000) Nontyphoidal Salmonella infections of children in tropical Africa. Pediatr Infect Dis J 19(12): 1189–96.
[3]
Mwangi I, Berkley J, Lowe B, Peshu N, Marsh K, et al. (2002) Acute bacterial meningitis in children admitted to a rural Kenyan hospital: increasing antibiotic resistance and outcome. Pediatr Infect Dis J 21(11): 1042–8.
[4]
Berkley JA, Lowe BS, Mwangi I, Williams T, Bauni E, et al. (2005) Bacteremia among children admitted to a rural hospital in Kenya. N Engl J Med 352(1): 39–47.
[5]
Brent AJ, Oundo JO, Mwangi I, Ochola L, Lowe B, et al. (2006) Salmonella bacteremia in Kenyan children. Pediatr Infect Dis J 25(3): 230–6.
[6]
Kariuki S, Revathi G, Kariuki N, Kiiru J, Mwituria J, et al. (2006) Invasive multidrug-resistant non-Typhi Salmonella infections in Africa: zoonotic or anthroponotic transmission? J Med Microbiol 55(Pt 5): 585–91.
[7]
Enwere G, Biney E, Cheung YB, Zaman SM, Okoko B, et al. (2006) Epidemiologic and clinical characteristics of community-acquired invasive bacterial infections in children aged 2–29 months in The Gambia. Pediatr Infect Dis J 25(8): 700–5.
[8]
Kariuki S, Revathi G, Kariuki N, Kiiru J, Mwituria J, et al. (2006) Characterisation of community acquired non-Typhi Salmonella from bacteraemia and diarrhoeal infections in children admitted to hospital in Nairobi, Kenya. BMC Microbiol 6: 101.
[9]
Mtove G, Amos B, von Seidlein L, Zaman SM, Okoko B, et al. (2010) Invasive salmonellosis among children admitted to a rural Tanzanian hospital and a comparison with previous studies. PLoS One 5(2): e9244.
[10]
Archibald LK, McDonald LC, Nwanyanwu O, Kazembe P, Dobbie H, et al. (2000) A hospital-based prevalence survey of bloodstream infections in febrile patients in Malawi: implications for diagnosis and therapy. J Infect Dis 181(4): 1414–20.
[11]
Crump JA, Ramadhani HO, Morrissey AB, Msuya LJ, Yang LY, et al. (2011) Invasive bacterial and fungal infections among hospitalized HIV-infected and HIV-uninfected children and infants in northern Tanzania. Trop Med Int Health. doi:10.1111/j.1365-3156.
[12]
Jacob ST, Moore CC, Banura P, Pinkerton R, Meya D, et al. (2009) Severe sepsis in two Ugandan hospitals: a prospective observational study of management and outcomes in a predominantly HIV-1 infected population. PLoS One 4(11): e7782.
[13]
Gordon MA, Graham SM, Walsh AL, Wilson L, Phiri A, et al. (2008) Epidemics of invasive Salmonella enterica serovar enteritidis and S. enterica Serovar typhimurium infection associated with multidrug resistance among adults and children in Malawi. Clin Infect Dis 46(7): 963–9.
[14]
Kingsley RA, Msefula CL, Thomson NR, Kariuki S, Holt KE, et al. (2009) Epidemic multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Res 19(12): 2279–87.
[15]
Feikin DR, Audi A, Olack B, Bigogo GM, Polyak C, et al. (2010) Evaluation of the optimal recall period for disease symptoms in home-based morbidity surveillance in rural and urban Kenya. Int J Epidemiol 39(2): 450–8.
[16]
Feikin DR, Jagero G, Aura B, Bigogo GM, Oundo J, et al. (2010) High rate of pneumococcal bacteremia in a prospective cohort of older children and adults in an area of high HIV prevalence in rural western Kenya. BMC Infect Dis 10: 186.
[17]
Adazu K, Lindblade KA, Rosen DH, Odhiambo F, Ofware P, et al. (2005) Health and demographic surveillance in rural western Kenya: a platform for evaluating interventions to reduce morbidity and mortality from infectious diseases. Am J Trop Med Hyg 73(6): 1151–8.
[18]
World Health Organization.Integrated Management of Childhood Illness. Geneva: World Health Organization. 2008: Available: http://whqlibdoc.who.int/publications/20?08/9789241597289_eng.pdf. Accessed: January 28, 2009.
[19]
Brooks JT, Ochieng JB, Kumar L, Okoth G, Shapiro RL, et al. (2006) Surveillance for bacterial diarrhea and antimicrobial resistance in rural western Kenya, 1997–2003. Clin Infect Dis 43(4): 393–401.
[20]
Clinical and Laboratory Standards Institute (CLSI, 2009) Performance Standards for Antimicrobial Susceptibility Testing; Nineteenth Informational Supplement. Informal supplement: CLSI.
[21]
Ribot EM, Fair MA, Gautom R, Cameron DN, Hunter SB, et al. (2006) Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet. Foodborne Pathog Dis 3(1): 59–67.
[22]
Oehlert G (1992) A note on the delta method. American Statistician 46: 27–9.
[23]
Breiman RF, Cosmos L, Njuguna H, Olack Beatrice, Audi Allan, et al. High Incidence of Bacteremic Typhoid Fever Within a Densely Populated Urban Informal Settlement, Nairobi, Kenya: Implications for Typhoid Vaccine Use in Africa. Plos One. In Press.
[24]
Green SD, Cheesbrough JS (1993) Salmonella bacteremia among young children at a rural hospital in Western Zaire. Annals of Trop Peds 13: 45–54.
[25]
Mackenzie G, Ceesay SJ, Hill PC, Walther M, Bojang KA, et al. (2010) A decline in the incidence of invasive non-Typhi Salmonella infection in The Gambia temporally associated with a decline in malaria infection. PLoS One 5(5): e10568.
[26]
Sigauque B, Roca A, Mandomando I, Morais L, Quintó L, et al. (2009) Community-acquired bacteremia among children admitted to a rural hospital in Mozambique. Pediatr Infect Dis J 28(2): 108–13.
[27]
Morpeth SC, Ramadhani HO, Crump JA (2009) Invasive non-Typhi Salmonella disease in Africa. Clin Infect Dis 49(4): 606–11.
[28]
Bronzan RN, Taylor TE, Mwenechanya J, Tembo M, Kayira K, et al. (2007) Bacteremia in Malawian Children with Severe Malaria: Prevalence, Etiology, HIV Coinfection, and Outcome. J Infect Dis 195: 895–904.
[29]
Mabey DC, Brown A, Greenwood BM (1987) Plasmodium falciparum malaria and Salmonella infections in Gambian children. J Infect Dis 155(6): 1319–21.
[30]
Graham SM, Walsh AL, Molyneux EM, Phiri AJ, Molyneux ME (2000) The clinical presentation of non-Typhi Salmonella bacteraemia in Malawian children. Trans R Soc Trop Med Hyg 94: 320–324.
[31]
Mtove G, Amos B, Nadjm B, Hendriksen IC, Dondorp AM, et al. (2011) Decreasing incidence of severe malaria and community-acquired bacteraemia among hospitalized children in Muheza, north-eastern Tanzania, 2006–2010. Malar J 10: 320.
[32]
Scott JA, Berkley JA, Mwangi I, Ochola L, Uyoga S, et al. (2011) Relation between falciparum malaria and bacteraemia in Kenyan children: a population-based, case-control study and a longitudinal study. Lancet 378(9799): 1316–23.
[33]
Hamel MJ, Adazu K, Obor D, Sewe M, Vulule J, et al. (2011) A Reversal in Reductions in Child Mortality in Western Kenya, 2003–2009. Am J Trop Med Hyg 85(4): 597–605.
[34]
Ochiai RL, Acosta CJ, Danovaro-Holliday MC, Danovaro-Holliday MC, Baiqing D, et al. (2008) A study of typhoid fever in five Asian countries: disease burden and implications for controls. Bull World Health Org 86(4): 260–8.
[35]
Gordon MA, Banda HT, Gondwe M, Gordon SB, Boeree MJ, et al. (2002) Non-Typhi salmonella bacteraemia among HIV-infected Malawian adults: high mortality and frequent recrudescence. Aids 16(12): 1633–41.
[36]
Gilks CF (1998) Acute bacterial infections and HIV disease. Br Med Bull 54(2): 383–93.
[37]
Feasey NA, Archer BN, Heyderman RS, Sooka A, Dennis B, et al. (2010) Typhoid Fever and Invasive NonTyphoid Salmonellosis, Malawi and South Africa. Emerg Infect Dis 16(9): 1448–51.
[38]
van Oosterhout JJ, Laufer MK, Graham SM, Thumba F, Perez MA, et al. (2005) A Community-Based Study of the Incidence of Trimethoprim-Sulfamethoxazole-Preventabl?eInfections in Malawian Adults Living With HIV. J Acquir Immune Defic Syndr 39(5): 626–31.
[39]
Gilks CF, Ojoo SA, Ojoo JC, Brindle RJ, Paul J, et al. (1996) Invasive pneumococcal disease in a cohort of predominantly HIV-1 infected female sex-workers in Nairobi, Kenya. Lancet 347(9003): 718–23.
[40]
Watera C, Nakiyingi J, Miiro G, Muwonge R, Whitworth JA, et al. (2004) 23-Valent pneumococcal polysaccharide vaccine in HIV-infected Ugandan adults: 6-year follow-up of a clinical trial cohort. Aids 18(8): 1210–3.
[41]
Wiktor SZ, Sassan-Morokro M, Grant AD, Abouya L, Karon JM, et al. (1999) Efficacy of trimethoprim-sulphamethoxazole prophylaxis to decrease morbidity and mortality in HIV-1-infected patients with tuberculosis in Abidjan, Cote d'Ivoire: a randomised controlled trial. Lancet 353(9163): 1469–75.
[42]
Scott JA, Hall AJ, Muyodi C, Lowe B, Ross M, et al. (2000) Aetiology, outcome and risk factors for mortality among adults with acute pneumonia in Kenya. Lancet 355: 1125–1130.
[43]
Tennant SM, Wang JY, Galen JE, Schmidlein PJ, Lees A, et al. (2011) Engineering and pre-clinical evaluation of attenuated non-Typhi Salmonella strains serving as live oral vaccines and as reagent strains. Infect Immun 79(10): 4175–85.