全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Temporal Patterns of Nucleotide Misincorporations and DNA Fragmentation in Ancient DNA

DOI: 10.1371/journal.pone.0034131

Full-Text   Cite this paper   Add to My Lib

Abstract:

DNA that survives in museum specimens, bones and other tissues recovered by archaeologists is invariably fragmented and chemically modified. The extent to which such modifications accumulate over time is largely unknown but could potentially be used to differentiate between endogenous old DNA and present-day DNA contaminating specimens and experiments. Here we examine mitochondrial DNA sequences from tissue remains that vary in age between 18 and 60,000 years with respect to three molecular features: fragment length, base composition at strand breaks, and apparent C to T substitutions. We find that fragment length does not decrease consistently over time and that strand breaks occur preferentially before purine residues by what may be at least two different molecular mechanisms that are not yet understood. In contrast, the frequency of apparent C to T substitutions towards the 5′-ends of molecules tends to increase over time. These nucleotide misincorporations are thus a useful tool to distinguish recent from ancient DNA sources in specimens that have not been subjected to unusual or harsh treatments.

References

[1]  Paabo S, Poinar H, Serre D, Jaenicke-Despres V, Hebler J, et al. (2004) Genetic analyses from ancient DNA. Annu Rev Genet 38: 645–679.
[2]  Noonan JP, Hofreiter M, Smith D, Priest JR, Rohland N, et al. (2005) Genomic sequencing of Pleistocene cave bears. Science 309: 597–599.
[3]  Hoss M, Dilling A, Currant A, Paabo S (1996) Molecular phylogeny of the extinct ground sloth Mylodon darwinii. Proc Natl Acad Sci U S A 93: 181–185.
[4]  Briggs AW, Stenzel U, Johnson PL, Green RE, Kelso J, et al. (2007) Patterns of damage in genomic DNA sequences from a Neandertal. Proc Natl Acad Sci U S A 104: 14616–14621.
[5]  Brotherton P, Endicott P, Sanchez JJ, Beaumont M, Barnett R, et al. (2007) Novel high-resolution characterization of ancient DNA reveals C>U-type base modification events as the sole cause of post mortem miscoding lesions. Nucleic Acids Res 35: 5717–5728.
[6]  Paabo S (1989) Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. Proc Natl Acad Sci U S A 86: 1939–1943.
[7]  Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362: 709–715.
[8]  Krause J, Briggs AW, Kircher M, Maricic T, Zwyns N, et al. (2010) A complete mtDNA genome of an early modern human from Kostenki, Russia. Curr Biol 20: 231–236.
[9]  Hofreiter M, Serre D, Poinar HN, Kuch M, Paabo S (2001) Ancient DNA. Nat Rev Genet 2: 353–359.
[10]  Malmstrom H, Stora J, Dalen L, Holmlund G, Gotherstrom A (2005) Extensive human DNA contamination in extracts from ancient dog bones and teeth. Mol Biol Evol 22: 2040–2047.
[11]  Fortea J, de la Rasilla M, Garcia-Tabernero A, Gigli E, Rosas A, et al. (2008) Excavation protocol of bone remains for Neandertal DNA analysis in El Sidron Cave (Asturias, Spain). J Hum Evol 55: 353–357.
[12]  Serre D, Langaney A, Chech M, Teschler-Nicola M, Paunovic M, et al. (2004) No evidence of Neandertal mtDNA contribution to early modern humans. PLoS Biol 2: E57.
[13]  Ermini L, Olivieri C, Rizzi E, Corti G, Bonnal R, et al. (2008) Complete mitochondrial genome sequence of the Tyrolean Iceman. Curr Biol 18: 1687–1693.
[14]  Haak W, Forster P, Bramanti B, Matsumura S, Brandt G, et al. (2005) Ancient DNA from the first European farmers in 7500-year-old Neolithic sites. Science 310: 1016–1018.
[15]  Caramelli D, Milani L, Vai S, Modi A, Pecchioli E, et al. (2008) A 28,000 years old Cro-Magnon mtDNA sequence differs from all potentially contaminating modern sequences. PLoS One 3: e2700.
[16]  Meyer M, Kircher M (2010) Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb Protoc 2010: pdb prot5448.
[17]  Maricic T, Whitten M, Paabo S (2010) Multiplexed DNA sequence capture of mitochondrial genomes using PCR products. PLoS One 5: e14004.
[18]  Briggs AW, Good JM, Green RE, Krause J, Maricic T, et al. (2009) Targeted retrieval and analysis of five Neandertal mtDNA genomes. Science 325: 318–321.
[19]  Garcia-Garcera M, Gigli E, Sanchez-Quinto F, Ramirez O, Calafell F, et al. (2011) Fragmentation of contaminant and endogenous DNA in ancient samples determined by shotgun sequencing; prospects for human palaeogenomics. PLoS One 6: e24161.
[20]  Rohland N, Siedel H, Hofreiter M (2010) A rapid column-based ancient DNA extraction method for increased sample throughput. Molecular Ecology Resources 10: 677–683.
[21]  Kircher M, Stenzel U, Kelso J (2009) Improved base calling for the Illumina Genome Analyzer using machine learning strategies. Genome Biol 10: R83.
[22]  Briggs AW, Stenzel U, Meyer M, Krause J, Kircher M, et al. (2010) Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res 38: e87.
[23]  Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8: 175–185.
[24]  Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754–1760.
[25]  Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079.
[26]  Team RDC (2010) R: A language and environment for statistical computing. 2.11.1 ed. Vienna, Austria: R Foundation for Statistical Computing.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133