Background Tumor necrosis factor-alpha (TNF-α) is a pro-inflammatory cytokine today identified as a key mediator of several chronic inflammatory diseases. TNF-α, initially synthesized as a membrane-anchored precursor (pro-TNF-α), is processed by proteolytic cleavage to generate the secreted mature form. TNF-α converting enzyme (TACE) is currently the first and single protease described as responsible for the inducible release of soluble TNF-α. Methodology/Principal Findings Here, we demonstrated the presence on THP-1 cells as on human monocytes of a constitutive proteolytical activity able to cleave pro-TNF-α. Revelation of the cell surface TACE protein expression confirmed that the observed catalytic activity is due to TACE. However, further studies using effective and innovative TNF-α inhibitors, as well as a highly selective TACE inhibitor, support the presence of a catalytically different sheddase activity on LPS activated THP-1 cells. It appears that this catalytically different TACE protease activity might have a significant contribution to TNF-α release in LPS activated THP-1 cells, by contrast to human monocytes where the TACE activity remains catalytically unchanged even after LPS activation. Conclusions/Significance On the surface of LPS activated THP-1 cells we identified a releasing TNF-α activity, catalytically different from the sheddase activity observed on human monocytes from healthy donors. This catalytically-modified TACE activity is different from the constitutive shedding activity and appears only upon stimulation by LPS.
References
[1]
Aggarwal BB, Natarajan K (1996) Tumor necrosis factors: developments during the last decade. Eur Cytokine Netw 7: 93–124.
[2]
Wajant H, Pfizenmaier K, Scheurich P (2003) Tumor necrosis factor signaling. Cell Death Differ 10: 45–65.
[3]
Sibilia J, Wachsman D (2002) Tumor necrosis factor alpha: une cible thérapeutique. Encycl Méd Chir, Appareil locomoteur 14-013-A-40: 16.
[4]
Cavaillon JM (1996) Tumor necrosis factor-α et lymphotoxines. Les cytokines Chap 21: 301–308.
[5]
Shurety W, Merino-Trigo A, Brown D, Hume DA, Stow JL (2000) Localization and post-Golgi trafficking of tumor necrosis factor-alpha in macrophages. J Interferon Cytokine Res 20: 427–438.
Robache-Gallea S, Morand V, Bruneau JM, Schoot B, Tagat E, et al. (1995) In vitro processing of human tumor necrosis factor-alpha. J Biol Chem 270: 23688–23692.
[8]
Glaser KB, Pease L, Li J, Morgan DW (1999) Enhancement of the surface expression of tumor necrosis factor alpha (TNFalpha) but not the p55 TNFalpha receptor in the THP-1 monocytic cell line by matrix metalloprotease inhibitors. Biochem Pharmacol 57: 291–302.
[9]
Coeshott C, Ohnemus C, Pilyavskaya A, Ross S, Wieczorek M, et al. (1999) Converting enzyme-independent release of tumor necrosis factor alpha and IL-1beta from a stimulated human monocytic cell line in the presence of activated neutrophils or purified proteinase 3. Proc Natl Acad Sci U S A 96: 6261–6266.
[10]
Gearing AJ, Beckett P, Christodoulou M, Churchill M, Clements J, et al. (1994) Processing of tumour necrosis factor-alpha precursor by metalloproteinases. Nature 370: 555–557.
[11]
Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, et al. (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385: 729–733.
[12]
Moss ML, Jin SL, Milla ME, Bickett DM, Burkhart W, et al. (1997) Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature 385: 733–736.
[13]
Bell JH, Herrera AH, Li Y, Walcheck B (2007) Role of ADAM17 in the ectodomain shedding of TNF-alpha and its receptors by neutrophils and macrophages. J Leukoc Biol 82: 173–176.
[14]
Li L, Yang Y, Wang Z, Gong F (2002) Study of the effects of LPS on the TACE gene expression and its function. Journal of Huazhong University of Science and Technolody (Med Sci) 22: 2002.
[15]
Hikita A, Tanaka N, Yamane S, Ikeda Y, Furukawa H, et al. (2009) Involvement of a disintegrin and metalloproteinase 10 and 17 in shedding of tumor necrosis factor-alpha. Biochem Cell Biol 87: 581–593.
[16]
Mezyk-Kopec R, Bzowska M, Stalinska K, Chelmicki T, Podkalicki M, et al. (2009) Identification of ADAM10 as a major TNF sheddase in ADAM17-deficient fibroblasts. Cytokine 46: 309–315.
[17]
Zheng Y, Saftig P, Hartmann D, Blobel C (2004) Evaluation of the contribution of different ADAMs to tumor necrosis factor alpha (TNFalpha) shedding and of the function of the TNFalpha ectodomain in ensuring selective stimulated shedding by the TNFalpha convertase (TACE/ADAM17). J Biol Chem 279: 42898–42906.
[18]
Rosendahl MS, Ko SC, Long DL, Brewer MT, Rosenzweig B, et al. (1997) Identification and characterization of a pro-tumor necrosis factor-alpha-processing enzyme from the ADAM family of zinc metalloproteases. J Biol Chem 272: 24588–24593.
[19]
Le Gall SM, Bobe P, Reiss K, Horiuchi K, Niu XD, et al. (2009) ADAMs 10 and 17 represent differentially regulated components of a general shedding machinery for membrane proteins such as transforming growth factor alpha, L-selectin, and tumor necrosis factor alpha. Mol Biol Cell 20: 1785–1794.
[20]
Chesneau V, Becherer JD, Zheng Y, Erdjument-Bromage H, Tempst P, et al. (2003) Catalytic properties of ADAM19. J Biol Chem 278: 22331–22340.
[21]
Haro H, Crawford HC, Fingleton B, Shinomiya K, Spengler DM, et al. (2000) Matrix metalloproteinase-7-dependent release of tumor necrosis factor-alpha in a model of herniated disc resorption. J Clin Invest 105: 143–150.
[22]
Ghosheh OA, Houdi AA, Crooks PA (1999) High performance liquid chromatographic analysis of the pharmacologically active quinones and related compounds in the oil of the black seed (Nigella sativa L.). J Pharm Biomed Anal 19: 757–762.
[23]
Sassa H, Takaishi Y, Terada H (1990) The triterpene celastrol as a very potent inhibitor of lipid peroxidation in mitochondria. Biochem Biophys Res Commun 172: 890–897.
[24]
Allison AC, Cacabelos R, Lombardi VR, Alvarez XA, Vigo C (2001) Celastrol, a potent antioxidant and anti-inflammatory drug, as a possible treatment for Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 25: 1341–1357.
[25]
Pinna GF, Fiorucci M, Reimund JM, Taquet N, Arondel Y, et al. (2004) Celastrol inhibits pro-inflammatory cytokine secretion in Crohn's disease biopsies. Biochem Biophys Res Commun 322: 778–786.
[26]
El Gazzar MA, El Mezayen R, Nicolls MR, Dreskin SC (2007) Thymoquinone attenuates proinflammatory responses in lipopolysaccharide-activated mast cells by modulating NF-kappaB nuclear transactivation. Biochim Biophys Acta 1770: 556–564.
[27]
Zhang Y, Pastan I (2008) High shed antigen levels within tumors: an additional barrier to immunoconjugate therapy. Clin Cancer Res 14: 7981–7986.
[28]
Beck G, Bottomley G, Bradshaw D, Brewster M, Broadhurst M, et al. (2002) (E)-2(R)-[1(S)-(Hydroxycarbamoyl)-4-phen?yl-3-butenyl]-2′-isobutyl-2′-(methanesulfonyl)-4-methylvalerohydrazide (Ro 32-7315), a selective and orally active inhibitor of tumor necrosis factor-alpha convertase. J Pharmacol Exp Ther 302: 390–396.
[29]
Skotnicki JS, DiGrandi MJ, Levin JI (2003) Design strategies for the identification of MMP-13 and Tace inhibitors. Curr Opin Drug Discov Devel 6: 742–759.
[30]
Wagner G, Laufer S (2006) Small molecular anti-cytokine agents. Med Res Rev 26: 1–62.
[31]
Tellier E, Canault M, Rebsomen L, Bonardo B, Juhan-Vague I, et al. (2006) The shedding activity of ADAM17 is sequestered in lipid rafts. Exp Cell Res 312: 3969–3980.
[32]
Black RA, Doedens JR, Mahimkar R, Johnson R, Guo L, et al. (2003) Substrate specificity and inducibility of TACE (tumour necrosis factor alpha-converting enzyme) revisited: the Ala-Val preference, and induced intrinsic activity. Biochem Soc Symp 39–52.
[33]
Doedens JR, Black RA (2000) Stimulation-induced down-regulation of tumor necrosis factor-alpha converting enzyme. J Biol Chem 275: 14598–14607.
[34]
Jin G, Huang X, Black R, Wolfson M, Rauch C, et al. (2002) A Continuous Fluorimetric Assay for Tumor Necrosis Factor-α Converting Enzyme. Analytical Biochemistry 302: 269–275.
[35]
Decoster E, Vanhaesebroeck B, Vandenabeele P, Grooten J, Fiers W (1995) Generation and biological characterization of membrane-bound, uncleavable murine tumor necrosis factor. J Biol Chem 270: 18473–18478.
[36]
Neumann U, Kubota H, Frei K, Ganu V, Leppert D (2004) Characterization of Mca-Lys-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2, a fluorogenic substrate with increased specificity constants for collagenases and tumor necrosis factor converting enzyme. Anal Biochem 328: 166–173.
[37]
Jin HZ, Hwang BY, Kim HS, Lee JH, Kim YH, et al. (2002) Antiinflammatory constituents of Celastrus orbiculatus inhibit the NF-kappaB activation and NO production. J Nat Prod 65: 89–91.
[38]
Schlondorff J, Becherer JD, Blobel CP (2000) Intracellular maturation and localization of the tumour necrosis factor alpha convertase (TACE). Biochem J 347 Pt 1: 131–138.
[39]
Boyum A (1968) Isolation of leucocytes from human blood. Further observations. Methylcellulose, dextran, and ficoll as erythrocyteaggregating agents. Scand J Clin Lab Invest Suppl 97: 31–50.
[40]
Kenney JS, Masada MP, Eugui EM, Delustro BM, Mulkins MA, et al. (1987) Monoclonal antibodies to human recombinant interleukin 1 (IL 1)beta: quantitation of IL 1 beta and inhibition of biological activity. J Immunol 138: 4236–4242.