全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Nitric Oxide-Driven Hypoxia Initiates Synovial Angiogenesis, Hyperplasia and Inflammatory Lesions in Mice

DOI: 10.1371/journal.pone.0034494

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Rheumatoid arthritis (RA) is an inflammatory articular disease with cartilage and bone damage due to hyperplasic synoviocyte invasion and subsequent matrix protease digestion. Although monoclonal antibodies against tumor necrosis factor alpha (TNFα) have been approved for clinical use in patients with RA, desired therapeutic regimens suitable for non-responders are still unavailable because etiological initiators leading to RA remain enigmatic and unidentified. Methodology/Principal Findings Bacteria-induced arthritis (BIA) that simulates collagen-induced arthritis (CIA) is developed in mice upon daily live bacterial feeding. The morphological lesions of paw erythema and edema together with the histological alterations of synovial hyperplasia and lymphocytic infiltration emerge as the early-phase manifestations of BIA and CIA. Bacteria- or collagen-mediated global upregulation of pro-inflammatory cytokines is accompanied by the burst of nitric oxide (NO). Elevation of the serum NO level is correlated with decline of the blood oxygen saturation percentage (SpO2), reflecting a hypoxic consequence during development towards arthritis. NO-driven hypoxia is further evident from a positive relationship between NO and lactic acid (LA), an end product from glycolysis. Upregulation of hypoxia inducible factor 1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) validates hypoxia-induced angiogenesis in the inflamed synovium of modeling mice. Administration of the NO donor compound sodium nitroprusside (SNP) causes articular inflammation by inducing synovial hypoxia. Anti-bacteria by the antibiotic cefotaxime and/or the immunosuppressant rapamycin or artesunate that also inhibits nitric oxide synthase (NOS) can abrogate NO production, mitigate hypoxia, and considerably ameliorate or even completely abort synovitis, hence highlighting that NO may serve as an initiator of inflammatory arthritis. Conclusions/Significance Like collagen, bacteria also enable synovial lesions via upregulating pro-inflammatory cytokines, triggering NO production, driving hypoxic responses, and inducing synovial angiogenesis and hyperplasia, suggesting that sustained infection might be, in part, responsible for the onset of synovitis and arthritis in mice.

References

[1]  Toes REM, Huizinga TWJ (2009) Autoimmune response in the rheumatoid synovium. PLoS Med 6: e1000009.
[2]  Smith HS (2011) Painful rheumatoid arthritis. Pain Physician 14: E427–E458.
[3]  van Zonneveld AJ, de Boer HC, van der Veer EP, Rabelink TJ (2010) Inflammation, vascular injury and repair in rheumatoid arthritis. Ann Rheum Dis 69(Suppl I): i57–i60.
[4]  Laragione T, Gulko PS (2010) mTOR regulates the invasive properties of synovial fibroblasts in rheumatoid arthritis. Mol Med 16: 352–358.
[5]  Schett G, Coates LC, Ash ZR, Finzel S, Conaghan PG (2011) Structural damage in rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis: traditional views, novel insights gained from TNF blockade, and concepts for the future. Arthritis Res Ther 13(Suppl 1): S4.
[6]  Tak PP, Kalden JR (2011) Advances in rheumatology: new targeted therapeutics. Arthritis Res Ther 13(Suppl 1): S5.
[7]  Biniecka M, Kennedy A, Ng CT, Chang TC, Balogh E, et al. (2011) Successful tumour necrosis factor (TNF) blocking therapy suppresses oxidative stress and hypoxia-induced mitochondrial mutagenesis in inflammatory arthritis. Arthritis Res Ther 13: R121.
[8]  Smolen JS, Aletaha D, Koeller M, Weisman MH, Emery P (2007) New therapies for treatment of rheumatoid arthritis. Lancet 370: 1861–1874.
[9]  Walsh LJ, Trinchieri G, Waldorf HA, Whitaker D, Murphy GF (1991) Human dermal mast cells contain and release tumor necrosis factor alpha, which induces endothelial leukocyte adhesion molecule 1. Proc Natl Acad Sci USA 88: 4220–4224.
[10]  Rahman MM, McFadden G (2006) Modulation of tumor necrosis factor by microbial pathogens. PLoS Pathog 2: e4.
[11]  FDA alert. http://www.drugs.com/fda/tumor-necrosis-?factor-alpha-tnf-alpha-blockers-label-change-boxed-warning-updated-risk-?infection-13023.html.
[12]  Sherbet G (2009) Bacterial infections and the pathogenesis of autoimmune conditions. Brit J Med Prac 2: 6–13.
[13]  Wu HJ, Ivanov II, Darce J, Hattori K, Shima T, et al. (2010) Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32: 815–827.
[14]  Cua DJ, Sherlock JP (2011) Gut microbiota strikes “back”. Nat Med 17: 1055–1056.
[15]  Nagy G, Clark JM, Buzas E, Gorman C, Cope AP (2007) Nitric oxide, chronic inflammation and autoimmunity. Immunol Lett 111: 1–5.
[16]  Nagy G, Koncz A, Telarico T, Fernandez D, Ersek B, et al. (2010) Central role of nitric oxide in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus. Arthritis Res Ther 12: 210.
[17]  Farrell AJ, Blake DR, Palmar RMJ (1992) Increased concentrations of nitrite in synovial fluid and serum samples suggest increased nitric oxide synthesis in rheumatic diseases. Ann Rheum Dis 51: 1219–1222.
[18]  Nagy G, Clark JM, Buzas E, Gorman C, Pasztoi M, et al. (2008) Nitric oxide production of T lymphocytes is increased in rheumatoid arthritis. Immunol Lett 118: 55–58.
[19]  Perkins DJ, St Clair EW, Misukonis MA, Weinberg JB (1998) Reduction of NOS2 overexpression in rheumatoid arthritis patients treated with anti-tumor necrosis factor alpha monoclonal antibody (cA2). Arthritis Rheum 41: 2205–2210.
[20]  Tang W, Lu Y, Tian QY, Zhang Y, Guo FJ, et al. (2011) The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science 332: 478–484.
[21]  Wang B, Ma L, Tao X, Lipsky PE (2004) Triptolide, an active component of the Chinese herbal remedy Tripterygium wilfordii Hook F, inhibits production of nitric oxide by decreasing inducible nitric oxide synthase gene transcription. Arthritis Rheum 50: 2995–2303.
[22]  Wheeler MA, Smith SD, García-Carde?a G, Nathan CF, Weiss RM (1997) Bacterial infection induces nitric oxide synthase in human neutrophils. J Clin Invest 99: 110–116.
[23]  Lala PK, Chakraborty C (2001) Role of nitric oxide in carcinogenesis and tumour progression. Lancet Oncol 2: 149–156.
[24]  Muntan J, De la Mat M (2010) Nitric oxide and cancer. World J Hepatol 2: 337–344.
[25]  Bredt DS (1999) Endogenous nitric oxide synthesis: biological functions and pathophysiology. Free Radic Res 31: 577–596.
[26]  Witthoft T, Eckmann L, Kim JM, Kagnoff MF (1998) Enteroinvasive bacteria directly activate expression of iNOS and NO production in human colon epithelial cells. Am J Physiol 275: G564–G571.
[27]  Courtenay JS, Dallman MJ, Dayan AD, Martin A, Mosedale B (1980) Immunisation against heterologous type II collagen induces arthritis in mice. Nature 283: 666–668.
[28]  Humby F, Bombardieri M, Manzo A, Kelly S, Blades MC, et al. (2009) Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium. PLoS Med 6: e1.
[29]  McDevitt H (2000) A new model for rheumatoid arthritis? Arthritis Res 2: 85–89.
[30]  Wilder RL (2002) Integrin alpha V beta 3 as a target for treatment of rheumatoid arthritis and related rheumatic diseases. Ann Rheum Dis 61(Suppl II): ii96–ii99.
[31]  Sánchez-Pernaute O, Largo R, Calvo E, Alvarez-Soria MA, Egido J, et al. (2003) A fibrin based model for rheumatoid synovitis. Ann Rheum Dis 62: 1135–1138.
[32]  Eckmann L, Kagnoff MF (2005) Intestinal mucosal responses to microbial infection. Springer Semin Immun 27: 181–196.
[33]  Abramson SB (2004) Inflammation in osteoarthritis. J Rheumatol 70: 70–76.
[34]  Cejka D, Hayer S, Niederreiter B, Sieghart W, Fuereder T, et al. (2010) Mammalian target of rapamycin signaling is crucial for joint destruction in experimental arthritis and is activated in osteoclasts from patients with rheumatoid arthritis. Arthritis Rheum 62: 2294–2302.
[35]  Cannon GW, Openshaw SJ, Hibbs JB Jr, Hoidal JR, Huecksteadt TP, et al. (1996) Nitric oxide production during adjuvant-induced and collagen-induced arthritis. Arthritis Rheum 39: 1677–1684.
[36]  Song XR, Shen JL, Wen HQ, Zhong ZR, Luo QL, et al. (2011) Impact of Schistosoma japonicum infection on collagen-induced arthritis in DBA/1 mice: A murine model of human rheumatoid arthritis. PLoS ONE 6: e23453.
[37]  Kelly D, Delday MI, Mulder I (2012) Microbes and microbial effector molecules in treatment of inflammatory disorders. Immunol Rev 245: 27–44.
[38]  Teachey DT, Greiner R, Seif A, Attiyeh , Bleesing J, et al. (2009) Treatment with sirolimus results in complete responses in patients with autoimmune lymphoproliferative syndrome. Brit J haematol 145: 101–106.
[39]  Wang JX, Tang W, Zhou R, Wan J, Shi LP, et al. (2008) The new water-soluble artemisinin derivative SM905 ameliorates collagen-induced arthritis by suppression of inflammatory and Th17 responses. British J Pharmacol 153: 1303–1310.
[40]  Maxwell JR, Gowers IR, Moore DJ, Wilson AG (2010) Alcohol consumption is inversely associated with risk and severity of rheumatoid arthritis. Rheumatology 42: 508–514.
[41]  Hultqvist M, Olofsson P, Gelderman KA, Holmberg J, Holmdahl (2010) A new arthritis therapy with oxidative burst inducers. PLoS Med 3: e348.
[42]  Kennedy A, Ng CT, Biniecka M, Saber T, Taylor C, et al. (2010) Angiogenesis and blood vessel stability in inflammatory arthritis. Arthritis Rheum 62: 711–721.
[43]  Kasuno K, Takabuchi S, Fukuda K, Kizaka-Kondoh S, Yodoi J, et al. (2004) Nitric oxide induces hypoxia-inducible factor 1 activation that is dependent on MAPK and phosphatidylinositol 3-kinase signaling. J Biol Chem 279: 2550–2558.
[44]  Natarajan R, Fisher BJ, Fowler AA III (2003) Regulation of hypoxia inducible factor-1 by nitric oxide in contrast to hypoxia in microvascular endothelium. FEBS Lett 549: 99–104.
[45]  Fermor B, Christensen SE, Youn I, Cernanec JM, Davies CM, et al. (2007) Oxygen, nitric oxide and articular cartilage. Euro Cell Mat 13: 56–65.
[46]  Han TH, Qamirani E, Nelson AG, Hyduke DR, Chaudhuri G, et al. (2003) Regulation of nitric oxide consumption by hypoxic red blood cells. Proc Natl Acad Sci USA 100: 12504–12509.
[47]  Xu WM, Charles IG, Moncada S (2005) Nitric oxide: orchestrating hypoxia regulation through mitochondrial respiration and the endoplasmic reticulum stress response. Cell Res 15: 63–65.
[48]  Nisoli E, Carruba MO (2006) Nitric oxide and mitochondrial biogenesis. J Cell Sci 119: 2855–2862.
[49]  Olson N, van der Vliet A (2011) Interactions between nitric oxide and hypoxia-inducible factor signaling pathways in inflammatory disease. Nitric oxide 25: 125–137.
[50]  Ng CT, Biniecka M, Kennedy A, McCornick J, FitzGerald O, et al. (2010) Synovial tissue hypoxia and inflammatory inflammation in vivo. Ann Rheum Dis 69: 1389–1395.
[51]  Keunen O, Johansson M, Oudin A, Sanzey M, Abdul Rahim SA, et al. (2011) Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci USA 108: 3749–3754.
[52]  Luross JA, Williams NA (2001) The genetic and immunopathological processes underlying collagen-induced arthritis. Immunology 103: 407–416.
[53]  Brand DD, Latham KA, Rosloniec EF (2007) Collagen-induced arthritis. Nat Protoc 2: 1269–1275.
[54]  Smith MM, Cake MA, Ghosh P, Schiavinato A, Read RA, et al. (2008) Significant synovial pathology in a meniscectomy model of osteoarthritis: modification by intra-articular hyaluronan therapy. Rheumatology (Oxford) 47: 1172–1178.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133